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e \What is a diffusion model?

e Answer: A stochastic model describing continuous
time dynamics. Such models have been made
popular in mathematical fincance, e.g., by
Nobel-prize winners Merton and Scholes.

e A typical way of representing such models, i.e.
desribing the nature of a dynamic process X (t), is
by means of stochastic differential equations:

dX (t) = p(X (1), 0)dt + (X (t),0)dW (t)

drift diffusion term

0 is a0 vector of parameters that define the
behaviour of the process.
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e W (t) is a standard Wiener process. For t > s,
EW(@t)|Wi(s)) = W(s), W continuous independent
increment process. dW (t) is continuous time white
noise.

e The u(X(t),0)dt part represents the predictable
part of the process.

e The o(X(t),0)dW part represents the stochastic
part.
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Data and model
e [ he mathematical idealization

e A given diffusion:
dX(t) = u(X(t),0)dt + o(X(t),0)dW (t)

IS observed at times tq,...,t,. The parameter, 0 is
to be estimated from X (t1),..., X (tn).

e A few approaches, simulation methods, method of
moments, estimating functions,
maximum-likelihood approximation.
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e [ he transition density:
f(x|xg, A) = density for X (t + A) given X (t) = xg
is only known for for some specific u(X(t),0) and
o(X(t),0)

e [ herefore maximizing the log-likelihood, i.e.,

solving:

mguxl(9|X(t1), ey X(Tn))

IS only possible in some special cases.



Some populuar diffusion models

OU dX(t) = k(a— X(t))dt + cdW (t)
Ornstein-Uhlenbeck /Vasicek

CIR dX(t) = k(o — X (¢))dt + o/ X (t)dW (¢)
Cox-Ingersoll-Ross /square-root process

CKLS dX(t) = r(a — X (t))dt + o X (£)PdW ()

Chan, Karolyi, Longstaff & Sanders (1992),
Cases of special interest p=1/2 and p=1

(1)

(2)

(3)
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These are all stochastic versions of a very simple
differential equation:

dX(t) = rk(a— X(t))dt
Given X (0), the solution is of the form:

X(t) = a+exp(—kt)(X(0) — a)
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The a parameter is the longtime equilibrium, &
controls the speed of convergence to equilibrium.

If at time O, the system is at (X (0) — «) distance from
equilibrium, then it will take the system log(2)/k time
units to decrease that distance by 50%.

In the stochastic case o and p control the volality of
the process.
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Kolmogorov forward equation

e What is known about f(x|xo, A)7,
x=ux(t+ A), g = x(t)

e Since X(t) is a diffusion process the density
function f(x|xo, A) solves:

3f(:13‘330,A) | o, (/L(:U,Q)f(:U’:B(),A))
A | O
_382 (0%(z, 0) f (x|z0, A)) 4
2 Ox?

What can be said about it?
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Assuming o(x) = 1,
writing p(x|xo, A) = log(f(x|xo, A)

and substituting eP(*l#0.2) for f(xz|xg, A) in Kolmogorov's
equations gives:

Op(x|xo, A) . Op(x|xo, A)
IN - p(z) + p(z) Py

1 {8}9(33@0, A)}2 B 382p(x|x0, A)
2 ox 2 Ox?

(4)

=0
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Substituting the Taylor expansion into equation (4)
gives the first two terms:



Substituting the Taylor expansion into equation (4)
gives the first two terms:

 B= fco)(ﬂ(ﬂﬁA) — cp(z]o)) (5)
_%Co(wlwo)’(:v)Q + p(@) + pu(z)cp(z]zo) (6)
cp (] z0)

— - c1(x|zo) 4+ (x — xO)Ci(fBWO)
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Next terms

+2A@(u(2) — y(zlz0))el (alao) — ¢ (z]20)

+2ca(z|z0) + (z — z0)cy(2]20))

+%A2(—6c’1(aﬁ|aﬁo)2 +6 (u(z) — co(zlz0)) c5(x|zo)
—3ch(z|z0) + 6c3(x|xo) 4 2(z — x0)c3(x]20))



The Kolomogorov equations force the coefficients for
each power of A to be zero.

Equation (5) gives

co(x|xo) = /93 w(u)du

0



e Substituting co(x|xg) into reduces the system of
equations to

%(M(ﬂi)2 + 1/ (2)?) + c1(zlzo) + (z — 20)cy (z|zo) = 0
—ci(x|x0) + 2c2(x|xo) + (& — xo)ch(x|x0) = 0
— 2 (xlzo) — 3¢ (alao)

+3c3(x|xo) + (x — z0)cs(x|T0) = O



And more



And more

—2c5(x|wo) — 12¢ (w)cy(x) +
deq(zx|xo) + (x — 20)Cy(x|T0) = O

5
_§CZ({L‘|330) — 20Cll (£U|£130)C€3(37|$0)

—15ch(x|z0)* + Bes(x|xo) + (x — xo)ck(z|axg) = 0
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e The ¢; functions are derived recursively by solving
the differential equations of the type:

jej(x|zo) + (x — xo)c;(x|z0) = ¢;j(x)  which gives

cj(x) = ! . /x(u — a:‘o)j_lqj(u)du

(x — 370)] 0

e The functions g,(x) are deciced by cg,...,cj_1

Seminar Central Bank of Iceland
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Some comments
e \What if the diffusion is not 17

e Transform X (t) to Y(¢) such that Y (¢) has
diffusion 1. That is always possible if X (t) is
one-dimensional

X®  du
Y(t) =~v(X(t)) = ——/ a - constant

e [to's lemma gives that Y (¢) will have unit diffusion
and drift:

py (y) = £ (“(W W) _ 1@(71(?;)))

oc(v"'y)) 20z



e [ he densities fx and fy are related by:

fx(zlwo, A) = fy (ylyo, A)|Jacobian| = fy (y|yo, A)/o(x)



e [ he densities fx and fy are related by:

fx(zlwo, A) = fy (ylyo, A)|Jacobian| = fy (y|yo, A)/o(x)

e [.e. the connection between the log-densites for
X(t)|X(0) and Y (¢)|Y (0) is:

px (x|ro, A) = py (ylyo, A) + log(1/o(x))
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e [ herefore the transformation is only a
technicality. I.e. the Taylor coefficints ¢; will be
messier functions of x and xy than of y = v(x) and
Yo = (o).

e Numerically it might be better to work with Y (¢)
than X(t).

e Solving recursively for the functions ¢; becomes
Increasingly complicated. A Taylor expansion in x
around xo (or y around yg) is therefore an option.
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e If Nno transformation took place, one still gets a
sequence of differential equations to solve, but
they will be more complicated.

2c_1(z) + o(z)*(c_1())* =0 c_1(wo) =0
will be the first one
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Recursive system for untransformed variable:

Condition (1) v(x) = o%(x)

v(z)c_{(x)? + 2c_1(z) =0




Condition (3) (Coefficient on t)

c1(w) — b @)k (2)o (@) + )l
p(z)o' (z)

20(x)
— (@) — S h@)o(a)? -
3 3
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Higher dimensions

e Same principles apply

e [ hink of a 2-dimensional case.

Xi(t) p1(Xa(t), Xa(t), 0)
Xa(t) p2(X1(t), Xa(t), 0)

dW1 (t)
dWs (t)




e [ he |log-density is assumed to be of the form

C(x, 0
—%log(Z#A)—D(w,O) | f ) |

COx, 0)+CcY(x, 0)A + C?(x, 0)A%/2 +
C®(x, 0)A?/3!1 + - ..

1
D(x, 8) = _log(det(o(x, 8)o(a, 0)1)



e Some conditions on o;; are needed in order to find
a neat transformation as in the univariate case.



e Some conditions on o;; are needed in order to find
a neat transformation as in the univariate case.

e Ait-Sahalia calls that situation a ,reducible’ case,
and the case where such a transformation does
not exist.
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e Analytical solutions of the C'U) functions difficult,
so focus is on Taylor expansions (in X).

e The resulting functions will be CUY) where an [-th
order Taylor approximation of order [ has been
taken in . A trick that could also be useful in one

dimension.

e The CUY functions can be derived analogously to
the univariate case in a messy but
straightforeward manner.
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Will it work?

A small simulation. The model
dX = k(a — X)dt + o XPdW

IS simulated using Milstein-scheme (strong Taylor of
order 1, 25 replications).

e [he time spans used are T= 1, 10, 100

e A=1, 0.1 and 0.01 are used.

e 10 points of process per observation.

o v =0.24, a=0.07, o0 =0.08838, p=0.75.
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T=1 T=10 T1T=100
3.2742 0.5352 0.2709
0.0793 0.0962 0.0695
0.1115 0.0979 0.0899
0.7695 0.7732 0.7570

> O ™

>

Table 1: Average estimates, for A=0.01



delta=1 delta=0.1
0.8232 0.2916

N>

&  0.0644 0.0744
& 0.0984 0.0864
5 0.7342 0.7299

Table 2: Average estimates, for T=100



T=1 T=10 T1T=100
s.d. r 1.8703 0.3995 0.0693
s.da 0.0234 0.1269 0.0048
s.d. ¢ 0.0542 0.0309 0.0042
0.2794 0.1084 0.0176

S.C

>

Table 3: Standard deviation of simulations, for
A=0.01



delta=1 delta=0.1

sd. & 0.4680 0.1807
sda  0.0099 0.0248
sd. &6 0.0510 0.0196
sdp  0.2190 0.0851

Table 4: Standard deviation of simulations, for T=100



A two dimensional example:

dX = pdt + ore’ dW
dY = k(a —Y)dt 4+ g2dW>



Results of 20 replications, u =0, o1 =02 =1, kK = 20,
a=0.01. T=1, A =1/10000

A A A

Py & b1 {1 09
m 24.1 0.0053 1.004 -0.159 1.000
sd 5.61 0.0519 0.006 0.983 0.007

Table 5: Simulation of 2-dim. model



Icelandic interest rate data
e Each transaction in 2002-2004.

e Zero-coupon governmental bonds, annualized to
r(t).

e Form of data:
RIKV 02 06 05 96.165 03.01.2002 11:42:4

RIKV 02 08 06 94.915 04.01.2002 11:13:1
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Figure 1: 1000 days of Icelandic bond market
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e [imeperiod is 1050 days. Trading took place on
432 days.

e 1933 transactions took place 5 days a week.
1 2 3 4 5

383 410 351 452 337
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Figure 2: Trading frequency

Seminar Central Bank of Iceland



daily sd

0.020

0.015

0.010

0.005

0.000

Daily standard deviations of r(t)

o
o © e
o 2,
] o o o, o o o o
o cQ 9 °© dég © % © OO © ° o *® o) @ C%
80 o (e}
o &> fo) %) O @
o o @@ o0 ® 5 9 OO %) S Q o
<) 080 o ﬁ@g’é@ﬁ??@@% & %@ oga%%gjg E@) %ﬁj O%Qm o & Oooo%o €2
I I I [
0 200 400 600 800 1000
day

Figure 3: Daily standard deviations
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Figure 4: Daily observed range
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e Of the 1933 observations, 664 had A; = 0. Many
had very small A; = 0.

e [ he variance of the prices of the simultaneous
observations offers a possibility to estimate the
market microstructure noise. The standard
deviation of simultaneous transactions is 6.4
points. (1%=100 points).

e For the expansion framework to work, the A;’s
have to be small, but not to small, e.g., 1072 is to
small. The diffusion models rule out large jumps
In small intervals.
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2 Result of CIR for Icelandic data

e t=1 month. Median r(t) of a day chosen.

r =15.090824 a =0.046586 o =0.081569
S.e.=0.028743 s.e.=0.000007 s.e.=0.000237

Looks much more peaceful than the test example that
( ) claim is a
natural result.
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Test example

T=1000, A = 0.04, simulation result (1000
time-periods), one replication. Parameter values from

( )-

k =0.24 alpha =0.08 o =0.08833
r =0.23908 a =0.08353 o =0.08757
S.e.=0.02196 s.e.=0.00335 s.e.=0.00039

o & —=0.08358, 1= a = 0.08
e s=0.03556, maxz(x(t)) = 0.2801, min(x(t)) = 0.0089

e St.dev of stationary dist.= /a * 02/(2 * k) = 0.03608
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1000 days of CIR
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Figure 5: A simulated CIR for 1000 time-periods.
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