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1 Introduction

This handbook documents version III of DYNIMO (dynamic Icelandic model), a small open-
economy New-Keynesian DSGE model estimated on Icelandic data. DSGE models encompass a
broad class of models, all of which are partly characterised by the properties described by each
letter of the acronym:

• Dynamic models are characterised by the time dependence of agents’ decisions.

• Stochastic fluctuations of states of nature drive deviations from the steady state.

• General Equilibrium models, as opposed to partial equilibrium models, do away with as-
sumptions of independence between sectors and markets. Furthermore, general equilibrium
solutions of dynamic models contain optimal paths for all model variables at all periods
considered.

It is illuminating to examine the evolution of models and economic thought leading to their
conception. Earliest indications for what was to come can be found in the works of Frank Ram-
sey and Léon Walras. Walras pioneered the theory of general equilibrium, publishing Éléments
d’économie politique pure (1874). Therein he lays the groundwork for general equilibrium the-
ory, proving the existence of a solution and insisting that the price system has a coordinating
function by aggregating agents’ information into common knowledge of excess demand or excess
supply. The primary contribution of Ramsey was the introduction of dynamics into general
equilibrium theory in the 1928 paper A mathematical theory of saving, where he uses dynamic
optimisation to maximise agents’ utility with respect to savings. Although these contributions
were highly regarded by their contemporaries, their profound effects on macroeconomic mod-
elling were realised decades later. In the wake of more comprehensive and detailed national
accounts, large-scale macroeconomic models came into vogue. Their golden age was the ’50s
and ’60s with government bodies and central banks around the world employing such models
for forecasting and analysis. These models grew out of the standard IS-LM models derived from
Keynes’ writings and consisted of ad hoc relationships and empirical correlations of macroeco-
nomic variables. Disappointing performance of these models, in conjunction with the famous
Lucas critique,1 spurred the rational expectation revolution, spearheaded by Robert Lucas.2 As
a result, microfounded agent based models became more prevalent, leading to Kydland’s and
Prescott’s seminal real business cycle (RBC) model. Their RBC model created fertile soil for the
genesis of modern DSGE models. RBC style models presume a representative agent with time-
independent preferences, characterised by deep parameters, operating in perfectly competitive
good, asset, and factor markets. Uncertainty and dynamics are introduced through stochastic
shocks to states of nature, to which the agent reacts in a manner consistent with rational ex-
pectations.3 The representative agent is generally considered to be a Gorman aggregation of
heterogeneous agents populating the economy.4 Kydland’s and Prescott’s RBC model was cali-
brated to capture stylised facts of the US economy over the sample period. Extending the RBC
model would have made parameter determination, be it calibration or estimation, a much more
challenging task at that time. The development of a general solution to linear difference models

1An influential paper by Christopher Sims (1980) on VAR models aided in the downfall of large-scale macroe-
conomic models, but did so orthogonally to the rational expectations movement.

2The concept of rational expectations was first developed by John Muth in Rational Expectations and the
Theory of Price Movements (Muth, 1961).

3In the early RBC models, the only source of uncertainty is technology.
4And thus necessarily implicitly assuming conditions that make such aggregation valid (see Gorman (1961)

and related literature).
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under rational expectation (see Blanchard and Kahn (1980)) and increased computing power
opened up new avenues of research. The result was the modern DSGE model, which adopts the
representative agent framework and the microfounded nature of the RBC models and builds on
it. We can describe a canonical New-Keynesian DSGE model as a general equilibrium model
derived from rational behaviour of a representative agent making time-dependent decision in
reaction to stochastic fluctuations of states of nature, with added distortions. These distortions
can take various forms. DYNIMO incorporates nominal rigidities and monopolistic competition,
in addition to real rigidities in the form of habit persistence, variable capacity utilisation and
sector specific adjustment-costs. Due to their microfoundation and added realism in form of
distortions, New-Keynesian DSGE models provide a paradigm and theoretical framework for
discussion and analysis of macroeconomic issues which is both plausible and rooted in rational
behaviour.

The presented version of DYNIMO builds upon the original model developed by Seneca (2010)
and a second version developed by Gestsson (2013) (henceforth referred to as DYNIMO I and
DYNIMO II, respectively). DYNIMO I, in turn, is based on the foundational work of Woodford
(2003), Christiano et al. (2005) and Smets and Wouters (2003), and uses NEMO and RAMSES,
Norges bank’s and Riksbank’s DSGE models, respectively, as benchmarks.5 The open economy
characteristics of DYNIMO are inspired by Clarida et al. (2002). Seneca describes it hence: "The
home economy is assumed to be a small open economy, which is modelled by letting its relative
size go to zero in a general two-country model. International financial markets are incomplete
and international financial intermediation is subject to endogenous costs as in Laxton and Pesenti
(2003)." DYNIMO III is, by and large, a standard DSGE model, although it departs from the
canonical DSGE model in a few ways to integrate peculiarities of the Icelandic economy. Most of
the features of the Icelandic economy are relayed through the sign and intensity of dependence
between variables, but on occasion the form of the relationships are altered to accommodate
Icelandic features. Iceland is a small open economy which depends heavily on its export sector,
a large part of which consists of a few but very different sub-sectors, namely tourism, aluminium
and fisheries. The aluminium and fish industries do not respond to short-term price and demand
fluctuations the same way as tourism and smaller export sectors do. Over the span of several
years the aluminium industry is capacity constrained and the fishing industry is constrained
by the decisions on total allowable catches, determined by the government on the basis of the
state of the fish stock. In our setup, firms operating in these sectors are also considered to be
price takers. In previous iterations of DYNIMO, the monetary policy rule was non-standard to
further indulge Icelandic idiosyncrasies. The rationale was that since inflation targeting was only
formally established in the year 2001, with a 2 year adaptation period, an appropriate monetary
policy rule for the period 1991-2005 would not be restricted to responding solely to inflation and
output as in the standard Taylor rule, but should include exchange rates as well. In the current
iteration of the model, monetary authorities adhere more closely to the Taylor rule, responding
to inflation, output gap and output growth.

Macroeconomic relationships derived from rational behaviour of agents should, in theory, be
robust to structural shifts in the economy.6 As a result DYNIMO is well suited for policy
analysis. In particular, DYNIMO can disentangle the history of structural shocks, which sheds
light on the mechanism driving the movement of aggregate macroeconomic variables. DYNIMO
can further function as a forecasting model. Specifically, it can serve as a cross-check for other
models with respect to comovements of dependent variables. DYNIMO is currently used for this

5See Brubakk et al. (2006) and Adolfsson et al. (2007) for the versions of the models Seneca cites. See Kravik
and Mimir (2019) and Adolfsson et al. (2013) for later versions.

6With the caveat that all relevant structural shifts are represented in the model.
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purpose at the Central Bank of Iceland (CBI), aiding the CBI’s Quarterly Macroeconomic Model
(QMM) (Daníelsson et al., 2019) in forecasting.

The handbook is structured as follows: In section 2 we describe the model’s structure and
underlying assumptions, as well as functional dependence of economic variables. In section 3 we
specify the data, parameter calibration and the prior distributions of parameters to be estimated.
We conclude the section by presenting the results of the estimation. In section 4 we report model
properties. Specifically we compare the covariance matrices of the data and the model, produce
impulse response functions and decompose the forecast error variance. In section 5 we derive
the log-linearised version of the model. In section 6 we provide a summary of the linearised
model. In Appendix A we detail derivations of all functional dependencies between variables.
Appendix B contains detailed description of the data, the particulars of the data transformation,
and specifications of the relationship between data and model variables. Additional steady state
calculations are presented in Appendix C. Lastly, figures and tables are found in Appendix D.

2 Model description

2.1 General description

DYNIMO III is a general two-country model, where the world economy is populated by a contin-
uum of households and firms. Domestic firms sell differentiated products to households at home
and abroad in competition with foreign firms. Agents in the interval [0, n], where n ∈ [0, 1], make
up the domestic economy, while agents in the interval (n, 1], reside abroad. After specifying the
model for an arbitrary n, we get the case of a small-open economy by letting n approach zero.
Monopolistic competition is assumed and implemented within the Dixit-Stiglitz (1977) frame-
work.

There are four broad types of agents in the model: households, firms, a central bank, and the
government. Households lend capital and labour to firms, from which they receive rent and
wages, respectively. Furthermore, households own the firms, from which they earn profits. In
addition, households earn interest on bonds. Households use their earnings to finance consump-
tion, acquire capital and government bonds, and to pay lump-sum taxes. Firms use labour and
capital to produce goods and services. We presuppose two types of firms in the model to accom-
modate the capacity-constrained segment of the export sector. The central bank sets interest
rates on bonds. The government levies lump-sum taxes to finance government consumption.

The agents interact in the labour, capital, bond, and goods markets. Households sell their labour
to firms for a wage which is set by households as in Calvo (1983). Labour and capital are combined
to produce intermediate goods. The intermediate goods are then priced by the firms within a
Calvo pricing framework. The final good is made by the final good packer who costlessly combines
intermediary goods into a final good which is used for consumption, investment, government
consumption or maintenance. The capital market is assumed to be frictionless and perfectly
competitive. One period risk-free state-contingent bonds are bought and sold by households, the
price of which is directly influenced by the Central Bank.
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2.1.1 Notation

An arbitrary variety absorbed domestically, Xk,t(i, j), has the following arguments: k denotes
the origin of the variety; i and j are the relevant agents which either decide on the magnitude of
the variety or are affected by the magnitude; and t indicates the time period upon which these
actions are taken. An aggregate of the variable Xk,t(i, j) is denoted by Xk,t(i), Xk,t(j), or Xk,t,
depending on the level of aggregation and the dimension along which the aggregation takes place.
In addition, an aggregation of both domestic and foreign origins of the variable is denoted Xt.
For example, consumption of a foreign variety i by a domestic household j at time t is denoted
CF,t(i, j), and j’s total consumption of imports is given by CF,t(j). The aggregate consumption
of imports over all households is CF,t. A step further would give an aggregation Ct of both CH,t
and CF,t. We differentiate between domestic and foreign absorption with a star superscript, e.g
a domestic variety i, consumed by a foreign household j at time t is denoted by the quantity
C∗H,t(i, j). The aggregation in the foreign absorption case is handled identically. In many cases
we will solely focus on the domestic economy, omitting the corresponding specifications for the
foreign economy.

For a given time dependent variable Xt, we will denote the corresponding stationary quantity
by Xt. If Xt = Xt, the overline notation is generally omitted. Further, we write xt = ln(Xt),
and denote the percentage deviation from the steady state, X, by X̂t = Xt

X − 1 ≈ xt−x. Lastly,
expectations of a random variable Xt, conditional on information available at time τ is denoted
Eτ [Xt]. The distinction between firm i and good i is minimal in our treatment and will be used
almost interchangeably throughout the text.

2.2 Production

There are two types of firms producing intermediate goods in the domestic economy: The generic
domestic firms producing differentiated goods for all markets with the same technology, and
specialised export firms producing non-differentiated goods. The latter firms are characterised
by perfect price inelasticity of supply, perfect substitutability, price taking and that their produce
is solely absorbed abroad. In addition, we assume that they only employ capital in production.
We use the subscript g for variables related to generic producers and E for variables relating to
specialised exports.

2.2.1 Generic firms

Let Kg,t(i) denote the capital a generic firm i has at its disposal and NS,t(i) the labour supply
in hours that firm i employs in production. The generic firm produces a differentiated good,
Yg,t(i), according to

Yg,t(i) = Kg,t(i)
ψH (ZtZH,tNS,t(i))

1−ψH (1)

where 0 ≤ ψH ≤ 1, is the capital share parameter. The permanent economy-wide total factor
productivity shock is given by Zt. We denote its growth rate ΠZ,t = Zt

Zt−1
, which we presume

evolves according to
ΠZ,t = ΠρZ

Z,t−1Π1−ρZ
Z eεZ,t , εZ,t ∼ N(0, σ2

Z)

where ρZ ∈ (0, 1), ΠZ > 0, and σZ > 0 are constants. Note that the unconditional expectation
of ln(ΠZ,t) is ln(ΠZ), and we interpret ΠZ as the steady-state gross growth rate of technology.
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The stationary shock process, ZH,t, is a labour augmenting technology shock process, evolving
in accordance with

ZH,t = Z
ρZH
H,t−1e

εZH,t , εZH ,t ∼ N(0, σ2
ZH ), ρZH ∈ (0, 1)

We define the NS,t = Nt − ~N , where Nt is the labour provided to firms by households and ~N
is interpreted as overhead labour.

Conditional factor demand in conjunction with cost minimisation yields (see Appendix A, section
7.3 for details)

MCt(i) = MCt =
ψ−ψHH

(1− ψH)ψH−1

W 1−ψH
t (RKt )ψH

(ZtZH,t)1−ψH
(2)

where Wt is the wage index and RKt is the nominal rental rate of capital. As expected, marginal
cost is positively related to the price of factors of production, weighted by labour share, and
inversely related to technology shocks. In fact, up to a scalar multiple, the marginal cost can be
thought of as the weighted geometric mean of quality adjusted factor prices.

2.2.2 Specialised export firm

The specialised export firm produces a differentiated good, YE,t(i), according to

YE,t(i) = ZE,tKE,t(i) (3)

Since we assume that specialised export producers are capital constrained, there exists a constant,
K, such that KE,t(i) ≤ KZt. The shock Zt is the aforementioned permanent technology shock,
and ZE,t is a stationary technology shock specific to specialised exports, given by

ZE,t = ZρEE,t−1e
εE,t , εE,t ∼ N(0, σ2

E), ρE ∈ (0, 1)

2.3 Factor markets

2.3.1 Labour market

For a given firm, i ∈ [0, n], we define its labour demanded, Nt(i), via a labour packer as a
Dixit-Stiglitz aggregate of the differentiated labour services supplied by domestic households:7

Nt(i) = n
ρW,t−1

ρW,t

(∫ n

0

Nt(i, j)
ρW,tdj

) 1
ρW,t

(4)

where εW,t = 1
1−ρW,t > 1 is the stochastic elasticity of substitution between individual labour

services.8 Denoting the wage rate demanded by household j as Wt(j), cost minimisation by
firms for a given level of total labour input gives the following demand schedule for household
j’s labour services (see Appendix A, section 7.3, for details):

7We can omit the g subscript since only generic firms employ labour.
8The process will be defined in terms of markups in section 2.6.1, which implicitly defines the distribution of

the elasticity of substitution.
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Nt(j) =

(
Wt(j)

Wt

)−εW,t
Nt (5)

where

Wt =

(
1

n

∫ n

0

Wt(j)
1−εW,tdj

) 1
1−εW,t

(6)

is the wage index and

Nt =
1

n

∫ n

0

Nt(i)di

is the total hours, per capita, demanded. Demand for a particular household’s labour services
depends negatively on the relative wages the household demands, and positively on the total
labour service demanded in the economy.

2.3.2 Capital market

Households own the capital, KS,t(j), and rent KE,t(j) and Kg,t(j) to the specialised export
sector and generic firms, respectively, in a perfectly competitive rental market at the nominal
rate RKt . Each household chooses the utilisation rate, Ut(j), given by9

Kt(j) = Ut(j)KS,t(j)

where Kt(j) = KE,t(j) +Kg,t(j). The cost of capital utilisation is given by

Mt(j) = ΓU (Ut(j))KS,t(j)

where ΓU is an increasing convex function satisfying ΓU (1) = 0. The capital accumulation
equation is the standard:

KS,t+1 = (1− δ)KS,t + ZI,t

(
1− ΓI

(
It
It−1

))
It

The investment-specific technology shock, ZI,t determines the transformation efficiency of in-
vestment into capital, it evolves according to

ZI,t = ZρII,t−1e
εI,t , εI,t ∼ N(0, σ2

I ), ρI ∈ (0, 1)

Investment adjustment cost is given by a non-negative convex function satisfying ΓI(ΠZ) =
Γ′I(ΠZ) = 0 and Γ′′I (ΠZ) > 0. In words, investment adjustment cost is zero along the balanced
growth path, but positive otherwise, and increasing the farther investment growth is from the
balanced growth path. The aggregate effective capital per capita is given by

Kt =
1

n

∫ n

0

Kt(j)dj

9We follow Christiano et al. (2005) in our specification of capital utilisation and its associated cost.
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2.4 Demand aggregation

2.4.1 Domestic demand

Let the domestic households’ consumption of domestic goods, CH,t(j), be dictated by a Dixit-
Stiglitz aggregation:

CH,t(j) = n
ρH,t−1

ρH,t

(∫ n

0

C
ρH,t
H,t (k, j)dk

) 1
ρH,t

(7)

Domestic consumption of foreign goods is defined similarly:

CF,t(j) = (1− n)
ρF,t−1

ρF,t

(∫ 1

n

C
ρF,t
H,t (k, j)dk

) 1
ρF,t

(8)

where ρl,t, l ∈ {H,F}, is related to the elasticity of substitution, εl,t, by ρl,t =
εl,t−1
εl,t

. Through-
out we assume that εl,t > 1. Total consumption, which enters domestic households j’s utility
function, is given by

Ct(j) =

[
ᾱ

1
ηC

η−1
η

H,t (j) + (1− ᾱ)
1
ηC

η−1
η

F,t (j)

] η
η−1

(9)

where 1 − ᾱ = (1 − n)α, and α is a proxy for the degree of openness. Conversely, 1 − α, is a
measure of home bias.

As with consumption, let us define the price index of domestically produced goods within the
Dixit-Stiglitz framework as

PH,t =

(
1

n

∫ n

0

P
1−εH,t
H,t (k)dk

) 1
1−εH,t

(10)

and similarly for imported goods we have

PF,t =

(
1

n− 1

∫ 1

n

P
1−εF,t
F,t (k)dk

) 1
1−εF,t

(11)

Finally, we define the consumer price index, Pt, such that it satisfies:

PtCt = PH,tCH,t + PF,tCF,t

It can be shown that the consumer price index is equivalently written within the Dixit-Stiglitz
framework as (see Appendix A, section 7.4, for details)

Pt =
[
ᾱP 1−η

H,t + (1− ᾱ)P 1−η
F,t

] 1
1−η

(12)

Optimising a domestic household’s consumption decisions through expenditure minimisation for
a given level of consumption yields the following aggregate demand schedules (see Appendix A,
section 7.4, for details)

CH,t(i) = ᾱ

(
PH,t(i)

PH,t

)−εH,t (PH,t
Pt

)−η
Ct (13)
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for domestic goods and the demand for imported goods is given by

CF,t(i) =
n

n− 1
(1− ᾱ)

(
PF,t(i)

PF,t

)−εF,t (PF,t
Pt

)−η
Ct (14)

where
Ct =

1

n

∫ n

0

Ct(j)dj

is the total domestic consumption per capita. Similarly as for the labour services, the demand for
a good i in either market depends negatively on the relative price of that good, while it increases
with the total demand in the economy. The same relationship holds for foreign demand below.

2.4.2 Foreign demand

The foreign case differs from the domestic case due to the inclusion of an export adjustment cost
and the existence of specialised export firms. For a foreign household j, we denote its demand for
a generic domestic good as C∗g,t(j) and write C∗E,t(j) for the household’s demand for specialised
export goods. Let αE be the bias towards the specialised export. The export adjustment cost,
Γ∗H,t, is a positive convex function and we define the effective foreign demand for domestic goods
as

Č∗H,t(j) = [1− Γ∗H,t]C
∗
H,t(j) (15)

where

C∗H,t(j) =

[
(1− αE)

1
ηE C∗g,t(j)

ηE−1

ηE + α
1
ηE

E C∗E,t(j)
ηE−1

ηE

] ηE
ηE−1

(16)

The final good which enters a foreign household’s utility function is given by

C∗t (j) =
[
(ᾱ∗)

1
η Č∗H,t(j)

η−1
η + (1− ᾱ∗)

1
ηC∗F,t(j)

η−1
η

] η
η−1

(17)

Other relevant quantities are defined analogously to the domestic case, with the exception of the
price index, which is defined as

P ∗t C
∗
t = P̌ ∗H,tČ

∗
H,t + P ∗F,tC

∗
F,t (18)

where

P̌ ∗H,t = P ∗H,t

(
∂Č∗H,t
C∗H,t

)−1

We assume further that the price of specialised exports is indexed to export prices and we thus
have

P ∗E,t = P ∗g,t = P ∗H,t

The foreign demand schedule for domestic good i is given by (see Appendix A, section 7.4 for
details):

C∗g,t(i) =

(
1− n
n

)
ᾱ∗(1− αE)

(
P ∗g,t(i)

P ∗g,t

)−εN,t (P ∗H,t
P ∗t

)−η
·Υ(·) (19)
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C∗E,t(i) =

(
1− n
n

)
ᾱ∗αE

(
P ∗H,t
P ∗t

)−η
·Υ(·) (20)

where

Υt =
1

1− n

∫ 1

n

(
Γ̌∗H,t(j))

η · C∗t (j)
)
dj

and

Γ̌∗H,t(j) =
1− Γ∗H,t −

∂Γ∗H,t
∂CH,t(j)

C∗H,t(j)

(1− Γ∗H,t)
1
η∗

The foreign demand schedule for a foreign good i is given by

C∗F,t(i) =

(
n

1− n

)
ᾱ∗

(
P ∗F,t(i)

P ∗F,t

)−εF,t (
P ∗F,t
P ∗t

)−η
· C∗t (21)

with

C∗t =
1

1− n

∫ 1

n

C∗t (j)dj

as the total foreign consumption per capita.

2.5 Household consumption and investment decisions

The discounted utility of an infinitely lived household j, at time τ , is given by

Eτ

[ ∞∑
t=τ

βtUt(Ct(j), Ct−1, Nt(j), Nt−1)

]

where Ut =
(
ZC,t ln(Ct(j)− hCCt−1)− χ (Nt(j)−hNNt−1)1+φ

1+φ

)
, β ∈ (0, 1) is the subjective dis-

count rate, and ZC,t is a preference shock, evolving according to

ZC,t = ZρCC,t−1e
εC,t , εC,t ∼ N(0, σ2

C), ρC ∈ (0, 1)

The parameters hC , hN ∈ (0, 1), measure the degree of habit persistence in consumption and
labour, respectively, and φ is the inverse Frisch elasticity of labour supply. Lastly, χ determines
the equilibrium marginal rate of substitution.

The intertemporal budget constraint ensures that a domestic household’s allocation of resources
doesn’t exceed available resources, and is given by

Pt (Ct(j) + It(j) +Mt(j)) + ξtB
∗
H,t+1(j) + Et[Λt,t+1BH,t+1(j)] + TAt(j)

=R∗t−1(1− ΓB,t−1)ξtB
∗
H,t(j) +BH,t(j) +Wt(j)Nt(j) +RKt Ut(j)KS,t(j) +Dt(j)

The left-hand side represents household j’s allocation of resources to consumption, Ct(j), invest-
ment, It(j), and the cost of capital utilisation, Mt(j). Further resources go towards acquiring
foreign bonds, ξtB∗H,t+1(j), where ξt is the nominal exchange rate and is defined as the price of
one unit of foreign currency measured in domestic currency. Another saving option for household

12



j is domestic contingent claims, the present value of which is given by Et[Λt,t+1BH,t+1(j)], where
Λt,t+1 is the state-contingent stochastic discount rate.10 Finally, a portion of the household’s
income goes to lump-sum taxes, TAt(j). The right-hand side gives available resources as the sum
of holdings of foreign and domestic bonds, with foreign and domestic bond holdings acquired at
time t− 1 denoted by B∗t and Bt, respectively; labour income, WtNt; rental income from capital
RKt UTKS,t; and real dividends from firms, denoted by Dt. A foreign bond earns the foreign gross
risk-free rate R∗t and we define the risk-free gross interest rate by

Rt = E[Λt,t+1]−1 (22)

International financial friction is introduced to induce stationarity in net asset positions by
specifying the transaction cost function:

ΓB,t−1 = φ1 exp

(
φ2

ξt−1B
∗
H,t

Pt−1Yt−1
− 1

)
+ ln(ZB,t−1) (23)

where φ1 ∈ [0, 1], φ2 > 0 and

B∗H,t =
1

n

∫ n

0

B∗H,t(j)dj

is the aggregate per capita holdings of foreign bonds by domestic households. With this specifica-
tion, the country risk premium increases in the ratio of its foreign debt to GDP. The risk-premium
shock to the transaction cost function is represented by ZB,t and evolves according to

ZB,t = ZρBB,t−1e
εB,t , εB,t ∼ N(0, σ2

B), ρB ∈ (0, 1)

Solving the first order conditions, we get the following familiar optimality conditions11 (See
Appendix A, section 7.2, for details.)

1 = Eτ
[
−MUN,t
MUC,t

· Pt
Wt

]
(24)

1 = R∗t (1− ΓB,t)E
[
Λt,t+1

ξt+1

ξt

]
(25)

Γ′U (Ut) =
RKt
Pt

(26)

Qt = Et
[
Λt,t+1

Pt+1

Pt

(
RKt+1

Pt+1
Ut+1 − ΓU,t+1) + (1− δ)Qt+1

)]
(27)

1 =QtZI,t

(
1− ΓI,t (·)− Γ′I,t (·)

(
It
It−1

))
+ Et

[
Qt+1

Pt+1

Pt
Λt,t+1ZI,t+1Γ′I,t+1 (·)

(
It+1

It

)2
]

(28)

10A state-contingent stochastic discount factor at time t is defined as the period-t price of a claim to one unit
of consumption in a particular state in period t+ 1, divided by the period-t probability of that state occurring.

11We drop the reference to household j for clarity.
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where
Λt,t+1 = β

MUCt+1

MUCt

Pt
Pt+1

is the stochastic discount factor, Qt is the marginal Tobin’s q, and

MUC,t =
∂Ut(Ct(j), Ct−1, Nt)

∂Ct(j)
= ZC,t (Ct(j)− hCt−1)

−1 (29)

MUN,t =
∂Ut(Ct(j), Ct−1, Nt)

∂Nt(j)
= −χ (Nt(j)− hNNt−1)

ϕ (30)

are the marginal utilities of consumption and labour, respectively. Note that if there is no
investment adjustment cost, i.e. ΓI,t(·) is identically 0, then we get Qt = Z−1

I,t , as expected.

2.6 Prices, wages and exchange rates

2.6.1 Price setting

We employ the Calvo mechanism in modelling the price setting of firms, where a generic domestic
firm i is allowed to set its domestic (export) price, at time t+ 1, with probability 1−θH (1−θ∗H)
to a desired price Pt+1(i)

(
P∗t+1(i)

)
, while retaining a partially indexed price from the previous

period with probability θH (θ∗H). For domestic prices we thus define:

PH,t+1(i) =

{
Pt+1(i) with probability (1− θH)

ΠγH
t PH,t(i) with probability θH

(31)

Similarly for export prices of the generic domestic firm we have:

P ∗g,t+1(i) =

{
P∗t+1(i) with probability (1− θ∗H)

(Π∗t )
γ∗HP ∗g,t(i) with probability θ∗H

For the specialised export firm we define

P ∗E,t+1(i) = P ∗E,t+1 = P ∗g,t =

(
1

n

∫ n

0

(P ∗g,t(i))
1−ε∗H,tdi

) 1
1−ε∗

H,t

For import prices we define price formation analogously to that of export prices of the generic
domestic firm. Similarly, prices of foreign produced goods sold abroad evolve analogously to
prices of domestically produced goods for the home market.

When a generic domestic firm i changes its price, it chooses a price which maximises the value
of the firm, which in turn is determined by expected profits. We get the following maximisation
problem (see Appendix A, section 7.6, for details):

max
Pτ ,P∗τ

Eτ

[ ∞∑
t=τ

∆t|τ,τ

(
At|τ (i)− C

(
Y dg,t|τ (i)

))]
(32)

where
A = θt−τH AH,t|τ (i)PH,t|τ (i) + (θ∗H)t−τξt|τA

∗
H,t|τ (i)P ∗H,t|τ (i)
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denotes revenues, and where C is the cost function, ∆t,τ is the firm’s discount rate,12 and AH,t(i)
and A∗H,t(i) are the domestic and foreign absorption of the domestic good i, respectively. Note
that the subscript t | τ indicates the variables’ value at time t conditional on that the last price
decision was at time τ . The first order condition with respect to Pτ is given by13

0 = Eτ

[ ∞∑
t=τ

θt−τH ∆t|τ,τAH,t|τ (1− εH,t)Pτ
(
Pt−1

Pτ−1

)γH]

− Eτ

[ ∞∑
t=τ

θt−τH ∆t|τ,τAH,t|τ (1− εH,t)MH,tMCt|τ

]
(33)

where MH,t =
εH,t
εH,t−1 . Clearly elasticity of substitution is independent of price decisions and

thus εH,t|τ = εH,t. Furthermore, the general price level of the domestic economy is independent
of which firms are allowed to optimise their prices and thus Pt|τ = Pt for all t ∈ Z. Note that
when domestic prices are perfectly flexible, i.e. θH = 0, then the first order condition reduces to

Pt =MH,tMCt

and we get a natural interpretation ofMH,t as the domestic desired markup.14 The elasticity of
substitution is stochastic, and thus, the markup is stochastic, which we assume evolves according
to the process:

MH,t =MρMH

H,t−1M
1−ρMH

H eεMH

where
εMH

∼ N(0, σ2
MH

), ρMH
∈ (0, 1)

and
MH =

εH
εH − 1

∈ R+

Further, to secure the existence of an optimal price, and rule out unprofitability, we impose that
εH,t > 1. Note that as the elasticity of substitution tends to unity from above, the markup tends
to infinity.

Near to identically, we get the first order condition with respect to P∗τ as

0 = Eτ

[ ∞∑
t=τ

(θ∗)t−τ∆t|τ,τξtA
∗
H,t|τ (i)(1− ε∗H,t)P∗τ

(
P ∗t−1

P ∗τ−1

)γ∗H]

− Eτ

[ ∞∑
t=τ

(θ∗)t−τ∆t|τ,τξtA
∗
H,t|τ (i)(1− ε∗H,t)M∗H,tMC∗t|τ

]
(34)

As we show in Appendix A, section 7.6, every firm faces the same maximisation problem and
therefore has the same optimal price. Therefore, we can derive the law of motion for the domestic
price index in terms of the current price and the optimal price, and we get

PH,t =

[
θH

((
PH,t−1

PH,t−2

)γH
PH,t−1

)1−εH,t
+ (1− θH)P1−εH,t

t

] 1
1−εH,t

(35)

12Later we will assume that ∆t,τ = Λτ,t but we will use ∆t,τ in the derivation for generality and clarity.
13See Appendix A, section 7.6 for details.
14Defining the markup of a good as the ratio of the price of that good less marginal cost of producing said good

to the price yields: MH,t−1

MH,t
.
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Similarly, we get the law of motion for the export price index as

P ∗H,t =

θ∗H
(P ∗H,t−1

P ∗H,t−2

)γ∗H
P ∗H,t−1

1−ε∗H,t

+ (1− θ∗H)(P∗t )1−ε∗H,t


1

εH,t

(36)

We have analogous expressions for goods produced abroad.

2.6.2 Wage setting

We employ the Calvo mechanism to model wage setting, and only concern ourselves with the
domestic wage setting. While firms are assumed to set prices, households set wages. We denote
the optimal choice of wages at period τ by Wτ . Households j’s wages evolve according to

Wt+1(i) =

{
Wt+1(i) with probability (1− θW )(

Pt
Pt−1

)γW Zt+1

Zt
Wt(i) with probability θW

The maximisation problem takes the form

max
Wτ

Eτ

[ ∞∑
t=τ

θt−τW βt−τ
(
Ut(Ct|τ (j), Ct−1|τ , Nt|τ (j)

)]
(37)

and is presumed to satisfy the relevant constraint. Similarly to the price setting case, the subscript
t | τ indicates conditionality with respect to reset wages at time τ . This problem can be shown
to have the following first order condition (see Appendix A, section, 7.7 for details)

0 = Eτ

[ ∞∑
t=0

θt−τW βt−τ (εW,t − 1)Nt|τ (j)MUC,t|τ (j)
Wτ

Pt

(
Pt−1

Pτ−1

)γH Zt
Zτ

]

− Eτ

[ ∞∑
t=0

θt−τW βt−τ (εW,t − 1)Nt|τ (j)MUC,t|τ (j)MW,tMRSt|τ (j)

]
(38)

where MW,t =
εW,t
εW,t−1 and MRSt|τ = −MUN,t|τ

MUC,t|τ
is the marginal rate of substitution at time t,

conditional on that wages were last reset at time τ . The process for the wage desired markup is
defined analogously to the price markup:

MW,t =MρMW

W,t−1M
1−ρMW

W eεMW

where
εMW

∼ N(0, σ2
MW

), ρMW
∈ (0, 1)

and
MW =

εW
εW − 1

∈ R+, εW > 1

The law of motion of the wage index becomes (see Appendix A, section 7.7)
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Wt =

[
θW

((
Pt−1

Pt−2

)γW Zt
Zt−1

Wt−1

)
+ (1− θW )Wt

] 1
1−εW,t

(39)

2.6.3 Exchange rates and terms of trade

We assume that firms price to market, i.e. that prices are set in the currency of the buyer. Thus
the price of a foreign produced good sold domestically evolves with respect to domestic prices
and that export prices are rigid with respect to foreign prices. As a consequence, the law of
one price does not hold identically, i.e. PH,t 6= ξtP

∗
H,t and PF,t 6= ξtP

∗
F,t. This presumption in

conjunction with home bias implies that purchasing power parity does not hold in general. We
thus define the real exchange rate as the non-trivial quantity

St = ξt
P ∗t
Pt

(40)

where ξt is the nominal exchange rate giving the home-currency price of one unit of foreign
currency. Lastly, we define the terms of trade as

Tt =
PF,t
ξtP ∗H,t

(41)

2.7 Market equilibrium

Since the final good can be transformed into any variety, i.e. investment, consumption, or public
consumption good, one-to-one, it follows that the elasticity of substitution between varieties are
the same regardless of the use of the final good. Consequently, we may express demand relations
for the aggregate of final goods produced by any firm i with the private consumption demand
relations. That is, the demand schedule for consumption holds for public consumption, invest-
ment and maintenance of machinery. It follows that the demand schedule relationship holds for
the aggregate of final goods.

Aggregate demand for domestically produced good i ∈ [0, n] is given by

Y dH,t(i) = AH,t(i) +A∗H,t(i) (42)

where

AH,t(i) = CH,t(i) + IH,t(i) +MH,t(i) +GH,t(i)

A∗H,t(i) = A∗E,t(i) +A∗g,t(i)

A∗l,t(i) = C∗l,t(i) + I∗l,t(i) +M∗l,t(i) +G∗l,t(i)

with l ∈ {E, g}. The quantity MH,t(i) represents goods devoted to covering capital utilisation
costs, which we can informally think of as maintenance cost. We call AH,t(i) (A∗H,t(i)) the do-
mestic (foreign) absorption of good i.15 It represents the total demand for good i, distinguished
by where the demand originates.

15We define AF,t and A∗F,t analogously.
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Similarly for the foreign economy we have

Y dF,t(i) = A∗F,t(i) +AF,t(i) (43)

where

A∗F,t(i) = C∗F,t(i) + I∗F,t(i) +M∗F,t(i) +G∗F,t(i)

AF,t(i) = CF,t(i) + IF,t(i) +MF,t(i) +GF,t(i)
(44)

2.7.1 Domestically produced goods

Each generic domestic firm produces to satisfy the demand for its good, given its price. Let
Y hg,t(i) represent the production of a given generic domestic firm i for the domestic market and
Y fg,t(i) the production of the same firm for the foreign market. Total production of the firm is
thus given by Yg,t(i) = Y hg,t(i) + Y fg,t(i). We denote the production of the specialised export firm
as YE,t(i).

We can then define aggregate domestic output per capita as

YH,t = Y hH,t + EXt (45)

where

Y hH,t ≡
1

n

((
1

n

) 1
εH,t

∫ n

0

Y hg,t(i)
εH,t−1

εH,t di

) εH,t
εH,t−1

EXg,t ≡
1

n

((
1

n

) 1
ε∗
H,t

∫ n

0

Y fg,t(i)

ε∗H,t−1

ε∗
H,t di

) ε∗H,t
ε∗
H,t
−1

EXE,t ≡ min

(
1

n

∫ n

0

YE,t(i)di,
αE

1− αE
EXg,t

)
Total real export is simply the sum of the two types of exports.

EXt = EXg,t + EXE,t

Markets for domestically produced goods are in equilibrium when these 3 markets clear. Using
the aforementioned fact on elasticity of substitution of varieties for investment, government con-
sumption and maintenance, and inserting these expressions into the aggregate demand equations
we get for domestic demand of domestic goods (see Appendix 7.5 for details)

Y hH,t = (1− α)

(
PH,t
Pt

)−η
At (46)

where
At = Ct + It +Mt +Gt
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For foreign demand of domestic goods we get

EXg,t = α∗(1− αE)

(
P ∗H,t
P ∗t

)−η (1− Γ∗H,t − EXt
∂Γ∗H,t
∂EXt

)η
1− Γ∗H,t

A∗t

and

EXE,t =

{
ZtZE,tK if YE,t < EXg,t

αE
1−αEEXg,t otherwise

where
A∗t = C∗t + I∗t +M∗t +G∗t

2.7.2 Foreign produced goods

Similarly to the domestic case we insert demand schedules into the aggregate production to arrive
at market clearing. Next we let n approach its limit, i.e. n −→ 0, since the domestic economy is
a small open one (see Appendix 7.5 for details). This procedure gives

Y dF,t(i) = A∗F,t(i) +AF,t(i)

=

(
P ∗F,t(i)

P ∗F,t

)−ε∗F,t (
P ∗F,t
P ∗t

)−η
A∗t

where we have used that 1− ᾱ∗ = 1− nα∗ and 1− ᾱ = (1− n)α. Note that foreign production
is independent of domestic demand for foreign goods. Imports per capita are given as

IMt ≡
1

n

((
1

1− n

) 1
εF,t

∫ 1

n

Y hF,t(i)
εF,t−1

εF,t di

) εF,t
εF,t−1

In equilibrium we have Y hF,t(i) = AF,t(i), and thus for imports we get

IMt = α

(
PF,t
Pt

)−η
At (47)

2.8 Net exports and GDP

Net exports per capita in terms of domestically produced goods are defined as

NXt ≡ EXt −
PF,t
EtP ∗H,t

IMt = EXt − Tt · IMt (48)

where Tt represents the terms of trade. We define the GDP deflator as

PY,t = PtP
−α
F,t (ξtP

∗
H,t)

α = PtT
−α
t

This specification of the GDP deflator aids in identification of the model’s parameters since it
reduces the likelihood of nominal shocks being interpreted as real shocks. Furthermore, it links
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the real GDP defined in the model to the expenditure approach definition of GDP in the national
accounts.16 We define nominal gross domestic product per capita as

PY,tGDPt ≡ PH,tY hH,t + EtP ∗H,tEXt

Real GDP per capita in consumption units is therefore

Yt ≡ GDPt =

(
PY,t
Pt

)−1(
PH,t
Pt

Y hH,t +
EtP ∗H,t
Pt

EXt

)
(49)

=

(
PH,t
PY,t

Y hH,t +
EtP ∗H,t
PY,t

EXt

)
= (1− α)

(
PH,t
Pt

)1−η

Tαt At +
EtP ∗H,t
PY,t

EXt (50)

2.9 Monetary policy

To close the model we define a monetary policy rule dictating interest rates. Monetary authorities
are assumed to set rates according to the following augmented Taylor rule:

Rt
R

= ZR,t

(
Rt−1

R

)ξR [(ΠP,t

ΠP

)φP (Y t
Y

)φY (
Y t

Y t−1

)φ∆Y
]1−ξR

(51)

where 0 < ξR < 1 governs interest rate inertia and

ZR,t = eεR , εR ∼ N(0, σ2
R)

is a monetary policy shock. By mandate, the Central Bank of Iceland seeks to minimize inflation
deviation from inflation target, on average. Thus, in our specification, monetary authorities
respond to contemporaneous inflation, output and output growth. The latter two are intended
as proxies for future inflation. Our specification of the monetary policy rule deviates from that
of earlier versions. DYNIMO I and II followed Adolfson et al. (2007) in including exchange rates
and past inflation explicitly in the monetary policy rule. Their specification was influenced by
the fact that inflation targeting was legislated in 2001, coming into full effect in 2003, amidst
their estimation period of 1991Q1 – 2015Q4.

3 Estimation

We estimate the model using Bayesian techniques, sampling 4 million draws using the Random
Walk Metropolis-Hastings algorithm, provided by Dynare (Adjemian et al., 2011).17 Naturally,
the Bayesian approach requires us to decide on prior distributions for the parameters we intend
to estimate. We take inspiration from the posterior estimates in Seneca (2010) and Gestsson
(2013) when setting priors. As aforementioned, they estimate the model on data series covering
the period 1991Q1 – 2015Q4. Our dataset ranges from 2011Q1 to 2019Q4. In doing so we avoid
having the collapse of the Icelandic financial sector influence the parameter estimation. This

16DYNIMO I and II defined PY,t = Pt.
17See Chib and Greenberg (1995) for a detailed explanation of the Metropolis-Hastings algorithm.
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was deemed appropriate since the model has no financial sector and has therefore no mechanism
to sensibly assign the actualised shocks that hit the economy during that tumultuous period
to the model shocks. The estimated model is an augmentation of the model presented in the
previous section. We do so to ensure a better fit to the data. In particular, we add a smoothing
factor to the UIP, affix a measurement error to the import price observation equation, and append
maintenance cost to the model variable It when matching it to investment data, i.e. I̊t = It+Mt,
where I̊t denotes the transformed investment data.

3.1 Data and measurement equations

The base dataset consists of quarterly data from Statistics Iceland. For indices we rely on a
database created for CBI’s quarterly macroeconomic model, QMM (Daníelsson et al., 2019). For
the national account variables we use moving averages to dampen short run shocks, due to e.g.
data irregularities, not captured in the model, to curtail the effects such irregularities have on
forecasts. When applicable, a time series is seasonally adjusted and irregular components are
removed. Time series are listed in table 1.

Table 1: List of data linked model variables.

Description Variable

Gross domestic product Yt
Consumption Ct
Investment It
Government consumption Gt
Total imports IMt

Total exports EXt

Generic exports18 EXg,t

CPI Pt
Import prices PF,t
GDP deflator PY,t
Real exchange rate St
CBI’s key interest rate Rt
Trade weighted foreign GDP index Y ∗t
Trade weighted foreign price level P ∗t
Trade weighted foreign interest rate R∗t

Since the model is specified in deviations from steady state we need to detrend the data. Trends
are found in a few different ways. Selected variables are not transformed and we detrend the
level. For another group of variables we find the percentage growth of the underlying time
series and detrend therefrom. Lastly, a selection of variables is transformed into a ratio of other
variables, namely as a ratio of GDP, CPI or total exports. Which method is used depends
on what properties of the variable we want to ensure hold when forecasting, what trends are
currently in use in QMM, and what information the estimation procedure can extract for the
shock path determination. For example, using the growth of GDP to match with the model
variable Yt has direct implications for the labour augmenting technology shock, which in turn
affects estimation of other shocks impacting wages and labour. Another illustrative example is
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that we want to ensure that there isn’t a growing wedge between GDP deflator and CPI and
we therefore match the GDP deflator with the data as a ratio of CPI. Furthermore, we apply a
3-quarter moving average smoother on the subcomponents of GDP, after seasonal adjustment,
but before any other transformation is applied. This is justified on the grounds that Iceland is a
small country where frequent idiosyncratic non-modelled shocks find their way into the national
accounts. By applying moving average these distortive movements are ironed out. LetXT

t denote
the trend time series for variable Xt. Following is a list of the data transformations employed:

1. OBS_Xt = ln
(

Xt
Xt−1

)
− ln

(
XTt
XTt−1

)
2. OBS_Xt = Xt

X0,t

XTt
XT0,t
− 1

3. OBS_Xt = ln(Xt)− ln(XT
t )

4. OBS_Xt = aXt − bXT

We refer to table 10 in Appendix B for details on which method is applied to which variable.
We rely on previous estimates for a few of the trends. We follow Pétursson (2018) in choosing
the domestic equilibrium inflation rate, Πeq; take note of Daníelsson et al. (2016) when choosing
the real natural interest rate, Req; and refer to the QMM handbook (Daníelsson et al., 2019) for
the trade weighted equilibrium foreign inflation rate, (Π∗)eq and the equilibrium growth rate of
GDP, ln(

Y Tt
Yt−1T

).

3.2 Calibration

The purpose of calibration is two-fold: firstly, calibration is necessary to elicit a unique steady-
state, and secondly, calibration can mitigate effects of weak identification. We use several source
to determine appropriate calibration values. Our biggest inspiration are the two previous versions
of DYNIMO by Seneca (2010) and Gestsson (2013), and the CBI’s quarterly macroeconomic
model QMM (Daníelsson et al., 2019). Additional guidance comes from Riksbank’s RAMSES
II (Adolfson et al., 2013), Norges bank’s NEMO (Kravik and Mimir, 2019), the Federal Reserve
of New Zealand’s NZSIM (Kamber et al., 2016), and microeconomic results for which there
is a reasonable consensus. Lastly, we consider empirical moments over the estimation period.
Average GDP component shares and subcomponent ratios for the periods 1991Q1-2005Q4, over
which DYNIMO I and DYNIMO II are estimated, and 2011Q1-2019Q4, over which our model
is estimated, are shown in table 2. The wedges between the averages in the different periods
indicate a structural shift in the Icelandic economy in the wake of the financial crisis. A fact
which prompts reconsideration of the calibration values.

Changes in output shares of different industries over time, e.g. tourism and fisheries, are in
agreement with the idea that the Icelandic economy is fundamentally different in these periods
(see figure 1). This is further supported by the change in the tourism sector’s share of GDP,
going from roughly 3.5% in 2009 to 8.1% in 2016. The number of yearly visitors per capita
grew by 1000% between 1991 and 2018.20 In addition, the globally persistent low inflation and
low interest rate environment has potential implications for the natural interest rate in Iceland.
Daníelsson et al.(2016) indeed find that the natural real rate of interest has decreased in recent

18Generic export is defined as total export less exports of marine products, aluminium, aeroplanes and ships.
19Non-subscripted variables are real variables and variables with the subscript N are nominal.
20Source: OECD, Statistics Iceland, Icelandic Tourist Board.
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Table 2: Share of GDP components

Ratios19 91Q1–05Q4 11Q1–19Q4
C
Y 56.0% 50.1%
CN
YN

57.1% 52.6%
I
Y 21.9% 16.8%
IN
YN

23.2% 18.6%
G
Y 25.1% 22.1%
GN
YN

22.4% 23.8%
EX
Y 29.8% 41.9%
EXN
YN

33.6% 50.0%
IM
Y 33.4% 33.1%
IMN

YN
36.4% 45.0%

δ = I
K 1.79% 1.50%

αE = EXE
EX 56.0% 41.8%

years. Since the parameters of a microfounded DSGE model are considered deep, in the sense
that they reflect the structural aspects of the economy, it is necessary as a consequence of the
aforementioned reasons to accommodate the perceived structural shift by letting our calibrated
values differ from previous versions of DYNIMO.

From steady-state equations (214), (218), and (219), derived in Appendix C, we have

K

Y
=

(1− α · αE)ψH
MH(β−1 − 1 + δ)

+ ααE (52)

I

Y
= δ

K

Y
(53)

C

Y
= 1− I

Y
− γg (54)

where G
Y = γg. The steady-state assumption of vanishing trade balance, NX = EX−IM = 0, is

not in agreement with the data over the period 2011Q1-2019Q4, where we have seen a persistent
trade surplus. Therefore we allow for our calibrated values of the "great ratios"21 to imply
non-conforming steady-state ratios. The ratio of capital to investment, the steady state value of
which is δ, has fluctuated in the interval (0.01, 0.03) between 1991Q1-2019Q4 with an average of
0.017. The value decided upon in DYNIMO I and II was δ = 0.02, arguing that the investment
share was more plausible with that specification. The argument holds equally well in our case
and we follow tradition in setting δ = 0.02. In accordance with QMM (Daníelsson et al., 2019)
the capital share is fixed as ψH = 0.4. For the foreign capital share we fix ψF = 0.33, as in
DYNIMO I and II. From the first order conditions for households, we see that on a balanced
growth path, the stochastic discount rate is given by

ΛBGP = (ΠPΠZ)−1β

Recall that we define the nominal gross interest rate as the inverse of the expected value of the
21The "great ratios" term was coined by Klein and Kosobud (1961) and refers to those ratios of macroeconomic

variables which are presumed stationary. In our case it refers exclusively to the ratios of consumption, investment,
and government consumption to output, as well as the ratio of investment to capital.
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Figure 1: Average percentage share of GDP for different export sectors over the two relevant
periods.

stochastic interest rate, and we can thus write the gross natural real rate as

R

ΠP
= ΠZβ

−1

Setting β = 0.995, we arrive at annual steady state interest rates in harmony with Daníelsson et
al. (2016). The ratio of government consumption to GDP is calibrated at γG = 0.24. We now
get a restriction on the domestic markup from the steady state relations above in conjunction
with those given in equations (215) (see Appendix C for details):

MH =
(1− α · αE)ψH

(β−1 − 1 + δ)
(
Y
K − α · αE

)
Supplementing these restrictions on the markup with moment matching simulation experiments
and an appeal to the broad literature we settle on εH = 6, which implies a markup of 20%. We
follow DYNIMO I in regards to equating price elasticity of substitution of domestically produced
goods and imported goods and calibrate price elasticity of substitution for imported goods as
εF = 6. Which is in line with RAMSES II and NEMO. For labour, moment matching suggests
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εW on the interval (3, 5). Opting to not deviate too far from previous versions, we set εW = 4.5.
Steady state assumptions and restrictions necessitate

α =
EX

Y
=
IM

Y

In light of the disparity between these ratios in the data we take the approach of following the
export share and calibrate α = 0.42 .

Following DYNIMO I, where an AR model is estimated to determine the persistence of govern-
ment consumption and the error variance, we set ρg = 0.8 σg = 0.0051. We run an additional
AR model to determine the persistence in specialised exports, for which we find ρE = 0.93. In
accordance with the argument given in DYNIMO I for calibrating the price and wage indexation
parameters in order to reduce the dimensionality of the estimation we set γH = 0.75, γF = 0.75,
γ∗H = 0.75, γW = 0.75. The values were determined through moment matching and simulations
investigating the price response of monetary shocks. Again following DYNIMO I, we calibrate
the parameters for international elasticity of substitution, η, the inverse labour supply elasticity,
φ, and elasticity of capital utilisation, λU . Seneca (2010) refers to a discussion in Adolfsson et al.
(2007), who argue that international elasticity of substitution is driven to artificially high values
by the "estimation procedure’s attempt to reconcile the high volatility of imports relative to con-
sumption with the import demand relations," which is a function of total domestic demand and
relative prices. Seneca continues: "The nominal rigidities needed to generate plausible responses
to monetary shocks, for example, will only allow this relation to add up if η is very high." Values
for η vary in the literature. In their report for the European Commission, Imbs and Méjean
(2010) find values ranging from 0.5 to 2.7 for 30 different countries. For Sweden, Adolfsson et al.
(2013) estimate η as 1.5. Kravik and Mimir (2019) calibrate it as 0.5 for Norway and Kamber
et al. (2016) determine it as 0.75 for New Zealand. Previous versions of DYNIMO had η = 4.5,
notably higher than the other references. Taking note of these values and doing simulations, we
settled on η = 2. By similar reasoning, and using the same sources, we set the inverse Frisch
elasticity, φ, as 3. Complying with Seneca’s (2010) argument, we set λU = 99999, which implies a
fixed capital utilisation. We also follow DYNIMO I in setting the foreign marginal cost of output
factor as η∗mc,y = 2.7, where Galí et al. (2007) is given as precedent. Following QMM (Daníelsson
et al., 2019), we calibrate interest rate smoothing as ξR = 0.6. The ratio of specialised exports
to total export is set as αE = 0.36. Finally, we calibrate export adjustment cost parameter as
φ∗M = 5. Table 3 contains an exhaustive list of calibrated parameters and their values.

Table 3: Calibrated parameters

Parameter Value Description

α 0.42 Openness
β 0.995 Discount factor
δ 0.02 Depreciation rate
εH 6 ESUB22of domestic goods
εF 6 ESUB of imports
εW 4.5 ESUB of labour service
η 2 International ESUB
γg 0.24 Government spending share
ψH 0.4 Capital share of domestic production

(Continued on next page)
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Table 3: (continued)

Parameter Value Description

ψF 0.33 Capital share of foreign production
η∗mc,y 2.7 Foreign marginal cost of output factor
γH 0.75 Indexing of domestic goods prices
γF 0.75 Indexing of imported goods prices
γ∗H 0.75 Indexing of exported goods prices
γW 0.75 Indexing of wages
ρG 0.8 Persistence of government spending
ρE 0.93 Persistence of exogenous export
φ 3 Inverse of labour supply elasticity
λU 99999 Elasticity of capital utilisation costs
αE 0.36 Specialised export share
ξR 0.6 Interest rate smoothing
φ∗M 5 Export adjustment cost

3.3 Priors and results

As previously stated we use estimated posteriors from previous versions of DYNIMO for guidance
in prior selection. We deviate from them where more agnosticism is viable and choose to use
uniform distributions or the β-distribution with shape parameters (1, 1), which has the same
probability density function as the uniform distribution on the interval (0, 1). In addition we
slightly increase the variance from the reference posteriors in forming our priors to accommodate
new information. Furthermore, to facilitate the variance increase we must slightly modify the
prior means of those parameters whose posterior means in DYNIMO I and II were estimated
close to the edge of their underlying bounded prior distributions. As a rule of thumb the choice
of prior distributions is determined by the following criteria: the beta distribution family is
chosen when theory predicts that the relevant parameter is on the interval (0, 1), the inverse-
gamma distribution is chosen when the parameter are required to be positive, otherwise it is
assumed to be normally/uniformly distributed. The decision between using a uniform or normal
distribution rests on how informative we want the distribution to be, which in turn is influenced
by our opinion on the relevance of the reference posterior of that particular parameter. We make
exceptions to the rule of thumb with regards to priors for the standard deviation of shocks which
had large posterior means in the reference posteriors. We use a truncated normal distribution for
them. Furthermore, we adjust the initial value of the mode estimation for increased efficiency.
The prior and posterior distributions of estimated dynamic parameters and shocks’ persistence
parameters are given in table 4 below. The prior and posterior distributions of the standard
deviations of shocks are summarised in table 5. In Appendix D, the priors and posteriors of the
parameters from the VAR model of the foreign economy are found. Figures of prior distributions
and posterior distributions, as well as of convergence diagnostics, are found in Appendix D.

22ESUB stands for elasticity of substitution.
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Table 4: Priors and posteriors of dynamic parameters

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

hC beta 0.700 0.1500 0.941 0.0214 0.9089 0.9744
hN beta 0.500 0.1500 0.529 0.1565 0.2754 0.7922
λI invg 0.100 Inf 0.051 0.0198 0.0263 0.0762
φB invg 0.010 Inf 0.005 0.0022 0.0024 0.0085
φ∆Y norm 0.150 0.0500 0.134 0.0319 0.0807 0.1856
φP norm 1.500 0.2000 1.417 0.1304 1.2059 1.6245
φY norm 0.150 0.0500 0.019 0.0076 0.0068 0.0319
θF beta 0.500 0.1000 0.601 0.0612 0.5009 0.7019
θh beta 0.700 0.1000 0.727 0.1028 0.5751 0.8912
θ∗h beta 0.500 0.1000 0.282 0.0726 0.1648 0.3964
θw beta 0.600 0.1000 0.356 0.0759 0.2312 0.4811
ξS beta 0.750 0.1500 0.630 0.0732 0.5120 0.7474
ρ beta 0.500 0.1500 0.645 0.0665 0.5401 0.7554
ρB beta 0.500 0.1500 0.446 0.1321 0.2253 0.6596
ρC beta 0.500 0.1500 0.820 0.0551 0.7331 0.9086
ρD beta 0.500 0.1500 0.728 0.0688 0.6174 0.8399
ρH beta 0.500 0.1500 0.899 0.0467 0.8290 0.9727
ρI beta 0.500 0.1500 0.707 0.0733 0.5898 0.8289
ρµF beta 0.500 0.1500 0.639 0.1152 0.4514 0.8271
ρµH beta 0.500 0.1500 0.599 0.1292 0.3913 0.8176
ρ∗µH beta 0.500 0.1500 0.623 0.1252 0.4218 0.8235
ρµW beta 0.500 0.1500 0.731 0.0738 0.6119 0.8509

Comparing the results to DYNIMO I and II, we find that the parameters of the UIP are drastically
different. Specifically, we estimate the risk premium elasticity as more than 50% smaller than
found in DYNIMO II and 75% smaller than found in DYNIMO I. Therefore, the risk premium
is not as sensitive to net asset position changes as before. Furthermore, there is significantly
less persistence in the risk premium shock in DYNIMO III. Together, this should on average
result in higher frequency deviation in the risk premium around a generally smaller value, in
absolute terms. This result is unsurprising given the aforementioned metamorphosis of the
export sector. In addition, we have added specialised export firms and changed the monetary
policy rule, which both affect variables found in the UIP. The former has consequences for net
export which influences the exchange rate through the risk premium, while the latter influences
the expected interest rate which impacts the real interest rate differential. Disparity can be
found in the frequency of wage setting and price setting of export goods. We find that optimal
wage contracts last on average 6 months, while in DYNIMO I and II, the average time is found
to be close to 12 months. DYNIMO I and II diverge significantly in their estimation in the time
between price resets of export goods, with DYNIMO I reporting roughly 4 months between price
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resets, while DYNIMO II finds it to be closer to 8 months. We find it to be somewhere in the
middle, with the average time between price resets being slightly less than 6 months. Another
difference between our results and the estimates of previous versions of DYNIMO is that we find
shocks to be less persistent. The only exception to this is the persistence of domestic markup,
where we find the persistence to be marginally higher.

Table 5: Priors and posteriors of standard deviations of structural shocks.

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

σG unif 0.150 0.0866 0.023 0.0030 0.0187 0.0281
σZ unif 0.150 0.0866 0.011 0.0014 0.0091 0.0137
σB unif 0.150 0.0866 0.012 0.0025 0.0080 0.0160
σC norm 0.150 0.0866 0.070 0.0264 0.0319 0.1099
σD unif 0.150 0.0866 0.017 0.0022 0.0137 0.0208
σH unif 0.150 0.0866 0.019 0.0026 0.0148 0.0230
σI norm 0.150 0.0866 0.183 0.0584 0.0866 0.2760
σµ,F norm 0.150 0.0866 0.077 0.0337 0.0325 0.1241
σµ,H norm 0.150 0.0866 0.056 0.0430 0.0080 0.1171
σ∗µ,H norm 0.150 0.0866 0.048 0.0170 0.0256 0.0706
σµ,W norm 0.150 0.0866 0.142 0.0487 0.0660 0.2167
σR unif 0.150 0.0866 0.002 0.0003 0.0014 0.0022
σPF unif 0.150 0.0866 0.026 0.0032 0.0203 0.0306
σE unif 0.150 0.0866 0.027 0.0034 0.0217 0.0325
σ∗π unif 0.150 0.0866 0.001 0.0001 0.0007 0.0010
σ∗Y unif 0.150 0.0866 0.001 0.0002 0.0010 0.0015
σ∗R unif 0.150 0.0866 0.000 0.0001 0.0004 0.0006

In general, we find evidence of lower volatility than in DYNIMO I and II. In almost all cases the
estimation of standard deviation is lower in our estimate than the previous versions. Specifically,
the standard deviations of markup shocks are significantly smaller in DYNIMO III. For example,
the standard deviation for domestic markup shock and wage markup shock in DYNIMO II are
roughly 4 times larger than we find. A notable exception is the standard deviation for investment
technology shock, where we find the standard deviation to be roughly 60% larger than in previous
versions. These findings have a significant effect on both forecasting and historical variance
decomposition. This follows from the fact that estimation of past states of nature depends upon
the standard deviation of shocks and their persistence. Shocks with larger standard deviation
are assigned, ceteris paribus, a larger portion of the equilibrium disturbance. Clearly this affects
all historical analysis of shock transmission and thus interpretation of causal effects. The results
also affect forecasting through historical variance decomposition since a forecast takes the state
of nature at the current period as a given and their evolution is then dictated by persistence.
This, in turn, continually influences endogenous variables of the model into the future until the
shocks die out.
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4 Model properties and goodness-of-fit

A simple way to evaluate the goodness-of-fit of a model is to compare moments of model variables
to moments of corresponding underlying time series. By construction, the first moments of all
variables in the model is 0. Therefore, we turn to the second moments. For a model variable Xt

we denote the corresponding observable as X̊t. Details of transformations are given in Appendix
B, section 8.2. First we compare the standard deviations of model variables and the data over the
estimation period. Next we consider contemporaneous and first order correlations between model
variables and compare them to the correlations found in the data. Following the comparison of
second order moments, we calculate impulse response functions and contrast them to that of
previous versions of DYNIMO as well as the broad literature. Finally, we calculate the forecast
error variance.

4.1 Second order moments

Table 6 compares the standard deviation of model variables to standard deviation of the under-
lying time series. In the cases of variables denoted X̊t we have a direct correspondence between
model variables and the input in the estimation. In other cases, we restrict ourselves to the HP
filter as a generator of trends, relative to which standard deviations are calculated.

Table 6: Standard deviation of selected variables.

Description Variables Model Data
Output growth Y̊t 0.0139 0.0060
Consumption growth C̊t 0.0075 0.0063
Investment growth I̊t 0.0325 0.0341
Import growth ˚IM t 0.0214 0.0239
Export share E̊Xt 0.0691 0.0214
Inflation π̊t 0.0101 0.0032
Exchange rate growth S̊t 0.0369 0.0315
Interest rate R̊t 0.0115 0.0022
Hours N̊t 0.0441 0.0163
Wage growth W̊t 0.0206 0.0102
Output gap Yt 0.0827 0.0250
Consumption gap Ct 0.1289 0.0263
Investment gap It 0.1951 0.0871
Import gap IMt 0.1049 0.0917
Export gap EXt 0.0894 0.0232

Overall, the model implies more volatility than is found in the data. In most cases, standard
deviation of model variables is reasonably close to that of the data. However, in a few cases
there is a large disparity. The biggest offenders of the observables are the export share, E̊Xt,
the interest rate R̊t, and inflation π̊t. The source of the volatility is quite possibly the larger
standard deviation of the interest rate, which can be explained by our calibrating of the interest
rate smoothing parameter in line with QMM (Daníelsson et al., 2019). Comparison between the
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versions of DYNIMO is made difficult by difference in data handling and the fact that volatility
has changed drastically between estimation periods. In general, both the volatility of the model
and the data has decreased. There is a shared tendency between all versions of DYNIMO to
overestimate volatility. Standard deviation of GDP growth is in all cases roughly two times larger
in the model than the data, and standard deviation of inflation is roughly three times larger. For
import growth, investment growth and consumption growth, the models and data are relatively
harmonious.

4.1.1 Correlations

The problem reported in DYNIMO I that output and imports are countercyclical persists up to
first order correlation. However, the second order correlation between import growth and output
growth, i.e. corr( ˚IM t, Y̊t−2), is positive. The reverse correlation becomes positive at order four.
With respect to autocorrelation, the model is able to replicate the data well, as seen by inspecting
the diagonals in table 8. DYNIMO I and DYNIMO II report contemporary correlation between
output growth and other model variables corresponding to observables. In the cases of consump-
tion growth and investment growth our model replicates the data better. The performance is
similar for import growth, interest rates and hours. However, the contemporaneous correlation
of output growth and inflation matches the underlying data worse than the previous versions of
DYNIMO did, and the model is not able to replicate the negative contemporaneous correlation
between output growth and inflation. Most plausibly, this is due to the model not considering
technology growth to be as dominant a source of output growth as the data suggests and that
markup shocks and demand shocks combined are similarly important. Another explanation is
that there is a timing discrepancy between model and data, as suggested by the fact that the
model produces a negative correlation between output and inflation at orders from one through
three. Table 7 depicts the contemporaneous correlation matrix and table 8 shows first order
correlation.

4.2 Impulse response functions

Since this version of DYNIMO uses Seneca’s (2010) original version as its foundation, propagation
and transmission of shocks are largely the same as outlined therein. Therefore, the mechanisms by
which shocks propagate through the economy will not be described here in detail. Instead, we will
highlight differences and discuss possible sources of incongruence. On the whole, DYNIMO III is
less responsive per 1 standard deviation shock. This follows from the fact that we estimate the
standard deviations of shocks to be smaller than previous versions. The dissimilitude in monetary
policy response rules between versions of DYNIMO is a considerable factor for the differences
in impulse responses discussed below. The interest rate smoother parameter is smaller and the
relative importance of inflation is larger. This results in nominal variables, e.g. inflation and
exchange rate, not being as persistent, which influences the dynamics of international trade. To
compensate, the estimation results in more real persistence, and therefore we don’t necessarily
see consistently faster convergence to equilibrium in DYNIMO III. Rather, it is case specific.
Another source of divergence between DYNIMO III and its predecessors is the difference in the
UIP. As a result, we find that the dynamics of international trade will relatively often differ
between the models. Whether this is a result of a fundamental change in the Icelandic economy
due to structural shifts in the export industry as discussed before, a repercussion of the addition
of specialised export firms, or a consequence of the difference in the monetary policy rule is
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Table 7: Contemporaneous correlation matrix

Model Y̊t C̊t I̊t ˚IM t E̊Xt N̊t π̊t R̊t

Y̊t 1
C̊t 0.401 1
I̊t 0.431 0.227 1
˚IM t -0.254 0.129 0.346 1
E̊Xt 0.066 0.250 0.251 0.259 1
N̊t -0.012 -0.060 0.043 0.215 0.019 1
π̊t 0.082 -0.009 0.017 -0.010 0.066 0.293 1
R̊t 0.018 -0.047 -0.012 0.023 0.038 0.276 0.890 1

Data

Y̊t 1
C̊t 0.379 1
I̊t 0.329 0.403 1
˚IM t 0.395 0.713 0.752 1
E̊Xt 0.164 0.173 0.518 0.495 1
N̊t 0.177 0.573 -0.116 0.224 -0.448 1
π̊t -0.333 -0.454 0.141 -0.279 0.538 -0.641 1
R̊t 0.130 0.195 -0.348 0.020 -0.610 0.689 -0.701 1

difficult to establish. The impulse responses presented here are broadly similar, qualitatively, to
that of previous versions. Thus all comparisons made in Seneca (2010) between DYNIMO I and
the relevant literature hold roughly for DYNIMO III, by transitivity. All figures of IRF’s are
found in Appendix D.

4.2.1 Monetary policy shock

A monetary policy shock is a change in nominal interest rates which can not be explained by the
given monetary policy response function. Thus it it can not be anticipated by households via
information on inflation, output gap nor the historical path of nominal interest rates. Impulse
responses, in percent, to a one standard deviation impulse to monetary policy can be seen in
figure 2. The dynamics are broadly similar to the reported IRF’s in Seneca (2010). Implying that
the transmission mechanism of our model is very much comparable with that of Seneca, and thus
the stickiness creating the real interest rate effects, which in turn influence domestic demand is
the same. There is, however, a difference in the dynamics of investment and international trade.
Investment is substantially slower to bottom out in the new version and net export converges
faster. The response of consumption is very dispersed over the horizon, in both DYNIMO I
and III, with muted impact and slow convergence. This stems from the fact that in DYNIMO
decisions of consumption and investment are based on the expected path of interest rates, as
opposed to current interest rates. In addition, habit persistence of consumption is estimated to
be high.
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Table 8: First order correlations matrix

Model Y̊t−1 C̊t−1 I̊t−1
˚IM t−1 E̊Xt−1 N̊t−1 π̊t−1 R̊t−1

Y̊t 0.541 0.284 0.272 -0.301 0.020 -0.226 -0.017 -0.045
C̊t 0.368 0.848 0.223 0.114 0.247 -0.079 -0.010 -0.026
I̊t 0.326 0.186 0.714 0.250 0.276 -0.004 0.019 -0.012
˚IM t -0.126 0.153 0.282 0.676 0.205 0.237 0.053 0.053
E̊Xt 0.086 0.239 0.223 0.301 0.973 0.047 0.087 0.056
N̊t 0.107 -0.039 0.032 0.061 -0.020 0.849 0.199 0.191
π̊t 0.154 0.019 0.021 -0.072 0.037 0.270 0.859 0.718
R̊t 0.083 -0.038 -0.011 -0.037 0.014 0.299 0.926 0.928

Data

Y̊t 0.744 0.305 0.322 0.352 0.074 0.037 -0.357 0.175
C̊t 0.539 0.857 0.471 0.662 0.160 0.5493 -0.394 0.169
I̊t 0.260 0.251 0.757 0.444 0.367 -0.077 0.156 -0.245
˚IM t 0.443 0.657 0.803 0.864 0.401 0.177 -0.232 0.019
E̊Xt 0.322 0.225 0.623 0.542 0.939 -0.487 0.438 -0.637
N̊t 0.373 0.574 -0.092 0.289 -0.400 0.963 -0.689 0.715
π̊t -0.251 -0.457 0.013 -0.303 0.539 -0.594 0.800 -0.717
R̊t 0.114 0.229 -0.366 0.047 -0.482 0.620 -0.603 0.940

4.2.2 Temporary labour augmenting technology shock

In figure 3 the impulse responses to a temporary labour augmenting technology shock is depicted.
The dynamics here differ from DYNIMO I, specifically, the dynamics of international trade are
different, as well as the response of wages. A labour augmenting technology shock reduces
marginal cost, which reduces inflation. The effects of this is twofold. Firstly, it increases domestic
consumption and investment, and secondly it increases terms of trade. The second effect, in
turn, increasing exports and lessening imports. The latter effect is much more pronounced in
the current version than in earlier versions.

4.2.3 Domestic markup shock

A domestic positive markup shock in our model economy can be interpreted as an unanticipated
increase in the market power of domestic firms competing in the domestic market or as an increase
in the marginal cost of production for domestic firms producing for the domestic market.23
Impulse responses to a domestic markup shock can be seen in figure 4. A direct consequence
of a positive markup shocks is an increase in domestic prices. As a result, consumption is
reduced. The central bank reacts to inflation by increasing interest rates, thereby depressing
investment. Furthermore, imported goods become relatively more attractive due to the domestic
price increase, increasing imports. The combined effect of higher inflation, higher interest rates
and increased imports is to push down nominal exchange rates. The nominal exchange rate
decrease, in conjunction with a surge in inflation produces real exchange rates depreciation.

23The latter interpretation is valid if the change in the marginal cost of production can not be attributed to
the total factor productivity shock, the labour augmenting technology shock, or a wage markup shock.
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Impulse response dynamics in our model are in line with that of DYNIMO I, although we find
less persistence in nominal variables.

4.2.4 Export markup shock

Unlike the case for the domestic markup shock, for the markup shock of exported goods there is
a noticeable difference in dynamics of the international market and output between DYNIMO I
and III. Although the mechanism is the same, the intensity of the effects are different. Whereas
imports fall more than export as a consequence of exchange rate effects of the markup shock in
our model, import fall less than export in the previous versions. Therefore, on impact and for 20
quarters, the exported markup shock has the effect of depressing output, despite causing a surge
in domestic demand. The impulse response to a export markup shock is shown in figure 5.

4.2.5 Wage markup shock

The dynamics of the response to a wage markup shock are very similar to DYNIMO I. What is
interesting to highlight here is the difference between the interest rate response and the persis-
tence of inflationary effects of wage inflation due to a positive wage markup shock. In DYNIMO
I, both inflation and interest rates have yet to recover to equilibrium in 20 quarters, while in
the current version inflation is close to equilibrium after 7 quarters and interest rates after 9
quarters. Due to the persistent adjustment in the real economy, the path to equilibrium is hump
shaped and relatively slow after the initial bounce back.

4.2.6 Risk premium shock

The effects of a more aggressive monetary policy rule is on display in the impulse response to a
risk premium shock. Due to lower import prices, inflation deviation from equilibrium is negative
on impact. However, after approximately 5 quarters, inflation is nonnegative. In DYNIMO I,
inflation deviation is still negative after 10 quarters. Interest rates comparison follows the same
script. This in turn affects the real exchange rate through uncovered interest rate parity and
consequently impacts net export. The aggressive monetary policy rule discourages investment,
which depresses imports. This effect is seen in the original model as well, just with more lag.

4.3 Forecast error variance

We produce forecast error variance decomposition (FEVD) at horizons h ∈ {1, 2, 4, .., 4k} for
k ≤ 10. The FEVD displays the shocks’ contribution to the forecasting error variance for a
variable of our choice – a conditional historical shock decomposition. Thus, if we desire to evaluate
the model, we can see whether the forecasting error is explained by economically plausible shocks.
If our aim is to gain insight into the modelled economy, we assume the model correct and the
FEVD shows what drives fluctuations in the economy at different horizons. Furthermore, if a
shock dominates the FEVD of multiple variables, it can indicate model specification problems
or too small a data sample. We will focus on explaining the volatility of interest rates, output,
inflation and wages. In addition, we compare our FEVD with the proportion of variance in
the historical shock decomposition given in DYNIMO I. We group shocks into foreign, markup,
technology, preference, government, and monetary policy shocks.

33



Monetary policy shock accounts for 30% of the variation of interest rate at 1 quarter in and
decreases at longer horizons. Markup shocks dominate early on, with technology shocks becoming
similar in importance farther out. A finer categorisation reveals that the markup shock on
imported goods, the risk premium shock and the monetary policy shock explain roughly 75%
percent of the short to medium term variation.

For output and output growth, technology shocks dominate. Government consumption shocks
explains roughly 10% of the variation in output one quarter ahead but decreases to the negligible
as the horizon elongates. Markup shocks have the second largest average variation contribution.
The permanent technology shock constitutes roughly 60% of the variation in output at a horizon
of 20 quarters or longer, while only 25% at a horizon of 1 quarter. Temporary labour augmenting
technology shock, asymmetric technology shock and export shocks are other large explanatory
factors at short horizons.

Markup shocks explain around 60% of variation in inflation at short horizons, with technology
shocks and foreign shocks explaining most of the variation that remains. At longer horizons,
technology shocks become more pronounced. The import markup shock has the largest explana-
tory power of the markup shocks, with domestic markup shock coming in second. With respect
to technology shocks, the temporary labour augmenting shock explains 10-15% of the variation
over all horizons. Permanent technology shock explains more of the variation at longer horizons,
attaining its maximum at 40 quarters with roughly 15%.

Wage inflation variation is dominated at all horizons by the permanent technology shock, com-
prising roughly 60% of the variation. The second largest explanatory factor being the wage
markup shock.

In most cases, the characteristics of the variance contribution matches DYNIMO I. In particular,
the two models are concordant with respect to technology explaining by far the largest portion
of the variance for output, consumption and investment. In addition, markup is the biggest
contributor to fluctuations in interest rates, inflation, and the exchange rate. In contrast, we
find that technology contributes to a larger portion of wage inflation as well as for exports and
imports , whereas in DYNIMO I markup was the main driver of volatility for these three variables.

An intimately related, but subtly different, method to gauge goodness-of-fit is to calculate the
variance contribution of historical shock decomposition. A very similar story is told by that
measure. Table 9 shows the largest contributors to volatility for selected variables.

Table 9: Historical shock decomposition contribution in percent.

Shocks24

εZ εH εD εI µH µW µF εB

Ŷt 22.8 29.6 1.39 13.3 0.74 5.77 0.41 0.44
Y̊t 38.5 23.2 8.21 5.10 3.98 7.73 2.20 2.23
N̂t 1.42 24.8 9.97 2.53 4.56 33.2 1.95 2.62
πt 3.17 22.5 2.56 0.65 10.6 7.76 24.3 14.5
πW,t 53.9 1.65 7.43 2.07 2.72 23.4 1.86 2.53
R̂t 1.26 16.1 4.13 1.12 4.44 4.34 27.8 14.6
Ŝt 3.19 9.63 20.8 3.16 1.65 2.69 29.0 16.8

24Shock description: εZ is a permanent technology shock; εH is the temporary labour augmenting technology
shock; εD is the difference in domestic and foreign technology shock, which can be thought of as a exogenous
foreign shock to export demand; εI is the investment technology shock; µH is the domestic markup shock; µW is
the wage markup shock; µF is the import markup shock; εB is the risk premium shock.34



5 Percentage deviations from steady-state

All calculation in this subsection rely heavily on methods described in Appendix A, section 7.1.3.
The steady state value of a stationary series yt is given by E[yt] = y. For a non-stationary series
we have an analogous definition for steady state growth. We will sometimes employ the notation
S(yt) = y, where S is a projection operator onto the variable’s steady state, provided it exists.
At times we will abuse notation and use an equality sign instead of the correct approximation
sign.

5.1 Steady state assumptions and stationarity conditions

A model seeking to describe the economy at a business cycle frequency must be declarable,
directly or indirectly, as a mapping of deviations from steady state.25 For our definition of de-
viation to be sensible we require stationarity. Therefore, we must make assumptions on what
transformations are necessary to make stationary model variables correspond to their observable
counterpart. Furthermore, to solve the model we must presuppose certain relations on our steady
states. The nominal variables are assumed non-stationary due to the central bank’s non-negative
inflation target, which results in a non decreasing evolution of the price level in the long run.26

We assume balanced growth path holds for our economy and thus most real variables grow with
the permanent total factor productivity shock. Nominal variables naturally grow with the price
level. Thus for a domestic real variable Xt, we define Xt = XtZt. Most domestic nominal
variables, Xt, have the representation Xt = XtPt. Analogously, in the foreign case we have
X∗t = X

∗
tZ
∗
t for real variables and X∗t = X

∗
tP
∗
t for nominal variables. Exceptions to this rule are

wages, Wt = W tPtZt; capital stock, KS,t = KS,tZt−1; marginal utility, MUC,t = MUC,tZ
−1
t ;

and bonds BH,t = BH,tPt−1Zt−1, B∗H,t = B
∗
H,tP

∗
t−1Z

∗
t−1.

Regarding assumptions on the economies’ steady state, we suppose that for all exogenous shocks,
Zi,t, we have S(Zi,t) = 1 and assume no adjustment cost in steady state. Further, we assume
that PH = ΠP = Π∗P = ΠZ = U = 1 and B∗H,t = NX = 0. Lastly, we impose the condition that

χ =
W

MWNφC(1− hN )φ(1− hC)

Steady states of all other variables are derivable from these assumption. Seneca (2010) shows
that a unique solution exists to the system of equation that arises. We will thus assume the
existence of a unique solution for all steady states and only derive those steady state values that
are needed to calculate the percentage deviation from steady state.

25This follows from the standard multiplicative decomposition of a time series as

Xt = XT
t StCtIt

where XT
t is the trend, St is the seasonal factor, It is the irregular component, and Ct is the cyclical component

which we seek to capture. There, of course, exists an additive counterpart to this representation.
26This argument holds only if the underlying real variables are sufficiently well behaved. Which here roughly

means that they must not be expected to decrease at a rate larger than the price level is expected to increase.
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5.2 Production and factor markets

5.2.1 Production

Equation (1) gives the production of a generic domestic firm as

Yg,t = KψH
g,t (ZtZH,tNS,t)

1−ψH

where NS,t = Nt − ~N . Detrended, the equation takes the form

Y g,tZt = (Kg,tZt)
ψH (ZtZH,tNS,t)

1−ψH

or equivalently
Y g,t = K

ψH
g,t (ZH,tNS,t)

1−ψH

Thus in steady state we have
Yg = KψH

g N1−ψH
S

and
NS = (1− ~)N

where we have used that ZH = 1. To express the detrended equation in percentage deviations
from steady state we divide with the steady state and then take the log:

ln

(
Y g,t

Y g

)
= ψH ln

(
Kg,t

Kg

)
+ (1− ψH)

(
ln

(
NS,t
NS

)
+ ln(ZH,t)

)
which implies

Ŷg,t = ψHK̂g,t + (1− ψH)(N̂S,t + ẐH,t) (55)

In addition we have
N̂S,t =

1

1− ~
N̂t (56)

Note that if ~ = ψH , as in DYNIMO II, we get

Ŷg,t = ψHK̂g,t + N̂t + (1− ψH)ẐH,t

Thus, deviations from steady state in production are a weighted average of the deviation in
effective factor inputs, adjusted for overhead labour costs and labour augmenting technology
shock.

5.2.2 Marginal cost

The factor input relation from the first order conditions of cost minimisation is given by equation
(157):

Kt

NS,t
=

ψH
1− ψH

Wt

RKt

In a detrended form it becomes
Kt

NS,t
=

ψH
1− ψH

W t

R
K

t
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Thus in steady state we have
K

NS
=

ψH
1− ψH

W

RK

Dividing with the steady state values and taking logs we get

ln

(
R
K

t

RK

)
= ln

(
NS,t
NS

)
+ ln

(
W t

W

)
− ln

(
Kt

K

)
or

R̂Kt = N̂S,t + Ŵt − K̂t (57)

From equation (160) for marginal cost we have

MCt =
1

1− ψH

(
ψH

1− ψH

)−ψH W 1−ψH
t (RKt )ψH

(ZtZH,t)1−ψH

Detrended, the equation takes the form

MCtPt =
1

1− ψH

(
ψH

1− ψH

)−ψH (PtZtW t)
1−ψH (PtR

K

t )ψH

(ZtZH,t)1−ψH

implying

MCt =
1

1− ψH

(
ψH

1− ψH

)−ψH (W t)
1−ψH (R

K

t )ψH

(ZH,t)1−ψH

Thus in steady state we get

MC =
1

1− ψH

(
ψH

1− ψH

)−ψH
(W )1−ψH (RK)ψH

To express the detrended equation in percentage deviations from steady state we divide with the
steady state values and then apply logarithm on both sides:

ln

(
MCt
MC

)
= (1− ψH) ln

(
W t

W

)
− (1− ψH) ln (ZH,t) + ψH ln

(
R
K

t

RK

)
which implies

M̂Ct = (1− ψH)Ŵt + ψHR̂
K
t − (1− ψH)ẐH,t (58)

Unsurprisingly, given the determinants of the percentage deviation from steady state for produc-
tion, the deviation of marginal cost is given as the weighted average of the deviation in effective
factor prices.

5.3 Household optimisation

Recall that we define Rt such that
1 = RtEt[Λt,t+1]

Using equation (142) from Appendix A, we can write the Euler equation as:

1 = RtEt[Λt,t+1] = RtEt
[
β
ZCt+1(Ct+1(j)− hCCt)−1

ZCt(Ct(j)− hCCt−1)−1

Pt
Pt+1

]
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and in stationary form

1 = RtEt

βΠZC ,t+1

ΠZ,t+1

(Ct+1 − hC Ct
ΠZ,t+1

)−1

(Ct − hC Ct−1

ΠZ,t
)−1

Π−1
P,t+1


where Ct(j) = Ct. As Erceg et al. (2000) point out, this follows given the complete markets
assumption and, in particular, a complete contingent claims market where all agents share risks.
Thus if initial wealth is identical, then so is consumption across households.27 Using the substi-
tution method we get:

0 = R̂t + Et[πZC,t+1
]− Et[πP,t+1]−

(
hC

1− hC
+ 1

)
Et[πZt+1

]

−
(

hC
1− hC

)
Et[πZt ]−

1

1− hC
Ĉt+1 +

(
1

1− hC
+

hC
1− hC

)
Ĉt −

hC
1− hC

Ĉt−1

which we rewrite as

Ĉt =
hC

1 + hc
Ĉt−1 +

1

1 + hC
Et[Ĉt+1]− 1− hC

1 + hC
Et[R̂t − πP,t+1]

+
1

1 + hC
Et[πZ,t+1]− hC

1 + hC
πZ,t −

1− hC
1 + hC

Et[πZC ,t+1] (59)

where
πl,t = Π̂l,t = ln(Πl,t)− ln(Πl) = ln(Πl,t)

Therefore, the deviation in consumption at time t increases with expected deviation in consump-
tion at time t+ 1, as well as past deviations due to habit persistence. Furthermore, real interest
rates are the opportunity cost of consumption and thus consumption decreases as a response to
an increase in real interest rates. Expected technology growth increases contemporaneous con-
sumption since the households expects to be wealthier next period. Similarly, households adjust
consumption downwards if the realisation of a technology shock implies that the household is
wealthier than it thought it would be when it decided upon consumption at time t−1. Naturally,
expectations of consumption preference changes affect consumption.

Uncovered interest rate parity follows from equation (25), which states

1 = R∗t (1− ΓB,t)Et
[
Λt,t+1

ξt+1

ξt

]
= R∗t (1− ΓB,t)Et

[
Λt,t+1

St+1

St

ΠP,t+1

Π∗P,t+1

]

From the Euler equation, we know that percentage deviation from steady state of the stochastic
discount factor equals −R̂t. Thus, we can write

27In their textbook Foundations for Financial Economics, Huang and Litzenberger (1988) show that "when
the allocation of state contingent claims is efficient and individuals have time-additive state-independent utility
functions, prices in the economy are determined as if there were a single individual in the economy endowed with
the aggregate endowment."

38



0 = R̂∗t −
ΓB

1− ΓB
Γ̂B,t − R̂t + Et[Ŝt+1]− Ŝt + Et[πP,t+1]− Et[π∗P,t+1]

Let us define γB,t = ΓB
1−ΓB

Γ̂B,t, and the last equation can be written as

Ŝt = Et[Ŝt+1]− (R̂t − Et[πP,t+1]) + (R̂∗t − Et[π∗P,t+1])− γB,t (60)

We assume that γB,t is given by the stochastic process:

γB,t = θBb
∗
H,t+1 + zB,t (61)

where b∗H,t+1 is the home country’s real net asset position, and we impose as a proxy

b∗H,t+1 = β−1b∗H,t + N̂Xt (62)

The exchange rate changes as to close risk adjusted arbitrage opportunities. That is, the exchange
rate adjusts so that expected risk adjusted profit from strategic purchases of domestic and foreign
bonds is zero, the real earning of which are dictated by the corresponding real interest rates.

Finally, we log-linearise the expression related to capital and investment. We begin with the
capital utilisation rate, using equation (147) in stationary form:

R
K

= Γ′(Ut)

Taylor approximation gives
R
K −RK = Γ′′(U)(Ut − U)

Using that U = 1 and RK = Γ′(U) we get

R̂Kt = λU Ût (63)

where λU = Γ′′(1)
Γ′(1) . The capital stock and effective capital is related by

Kt = UtKS,t

which in stationary form is given by

Kt = UtKS,tΠ
−1
Z,t

Elementary operations give the equation in log linear form as

K̂t = Ût + K̂S,t − Π̂Z,t (64)

The law of motion of capital in stationary form is given by

KS,t+1 = (1− δ)KS,tΠ
−1
Z,t + ZI,t

(
1− ΓI

(
It

It−1

ΠZ,t

))
It

First we rewrite this equation as

1 = (1− δ)KS,tK
−1

S,t+1Π−1
Z,t + ZI,t

(
1− ΓI

(
It

It−1

ΠZ,t

))
ItK

−1

S,t+1 (65)
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Since we assume ΠZ = 1 and ΓI(1) = 0, it is clear that δ = I
KS

. Now using Taylor approximation
with respect to KS,t+1,KS,t, It, It−1, ZI,t and ΠZ,t, we get:

0 = (1− δ) 1

KS
(KS,t −KS)−

(
(1− δ) 1

KS
+ I

1

K2
S

)
(KS,t+1 −KS)

− (1− δ)(ΠZ,t − 1) +
I

KS
(ZI,t − 1) +

1

KS
(It − I)

Using δ = I
KS

, we can rewrite this equation to

K̂S,t+1 = (1− δ)(K̂S,t − Π̂Z,t) + δ(Ît + ẐI,t) (66)

The capital stock increases with past effective investment and decreases in response to past
technology shocks. Let us now turn to Tobin’s Q. Equation (27) states:

Qt(j) = Et
[
Λt,t+1

Pt+1

Pt

(
RKt+1Ut+1(j)

Pt+1
− ΓU (Ut+1(j)) + (1− δ)Qt+1(j)

)]
Stationary version is given by

Qt(j) = Et
[
Λt,t+1ΠP,t+1

(
R
K

t+1Ut+1(j)− ΓU (Ut+1(j)) + (1− δ)Qt+1(j)
)]

and steady state is given by
Q = β

(
R
K

+ (1− δ)Q
)

where we use U = 1 and by assumption, ΓU (1) = 0. Rewriting we get

Q =
β

1− (1− δ)β
R
K

(67)

Recalling that Et[Λ̂t,t+1] = −R̂t and applying Taylor approximation as described in Appendix
A, section 7.1.3, gives

Q̂t(j) = −Et
[
R̂t + πt+1

]
+
βRK

Q
Et
[
R̂Kt+1

]
+ β(1− δ)Et

[
Q̂t+1(j)

]
where we have used that R = β−1 (see Appendix C for derivation), ΠP = U = 1 and that
RK = Γ′U (1). Define ωq = β(1− δ) and we clearly have βRK = Q(1− ωq), and thus we get the
desired expression:

Q̂t(j) = −Et
[
R̂t + πt+1

]
+ (1− ωq)Et

[
R̂Kt+1

]
+ ωqEt

[
Q̂t+1(j)

]
(68)

Investment decisions of households are dictated by:

1 = ZI,tQt

[
1− ΓI,t − Γ′I,t ·

(
It
It−1

)]
+ Et

[
ZI,t+1Qt+1Λt,t+1ΠP,t+1Γ′I,t+1 ·

(
It+1

It

)2
]
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which in stationary form is:

1 = ZI,tQt

[
1− ΓI,t

(
It

It−1

ΠZ,t

)
− Γ′I,t

(
It

It−1

ΠZ,t

)
·
(

It

It−1

ΠZ

)]
(69)

+ Et

[
ZI,t+1Qt+1Λt,t+1ΠP,t+1Γ′I,t+1

(
It+1

It
ΠZ,t+1

)
·
(
It+1

It
ΠZ,t+1

)2
]

For the sake of readability let us, for a moment, disregard the expectation operator. We employ
first order Taylor approximation w.r.t. ZI,t, ZI,t+1, Qt, Qt+1, It, It−1, It+1, ΠZ,t, ΠZ,t+1,
Λt,t+1, ΠP,t+1. Recall that ΓI(ΠZ) = Γ′I(ΠZ) = 0 and ZI = ΠZ = ΠP = 1. Let f be a function
representing the right side of equation (69) and note that

∂f(·)
∂xt

∣∣∣∣
ss

= 0, for xt ∈ {ZI,t+1, Qt+1,ΠP,t+1,Λt,t+1}

We thus get

0 = Q(ZI,t − 1) + (Qt −Q) + g1(·)(It − I) (70)
+ g2(·)(It−1 − I) + g3(·)(It+1 − I)

−QΓ′′I (ΠZ,t − 1) +QR−1Γ′′I (ΠZ,t+1 − 1)

where

g1(·) = −QΓ′′I I
−1 −QR−1Γ′′I I

−1

g2(·) = QΓ′′I I
−1

g2(·) = QR−1Γ′′I I
−1

Recall that R−1 = β and we rewrite equation (70) as

0 = QẐI,t +QQ̂t −QΓ′′I (1 + β)Ît

+QΓ′′I Ît−1 +QβΓ′′I Ît+1

−QΓ′′I Π̂Z,t +QβΓ′′I Π̂Z,t+1

Defining λ−1
I = Γ′′I and rearranging gives

(1 + β)Ît = λI(ẐI,t + Q̂t)

+ Ît−1 + βÎt+1

− πZ,t + βΠ̂Z,t+1

and finally we get

Ît =
1

1 + β

(
βEt[Ît+1 + πZ,t+1] + Ît−1 − πZ,t + λI(ẐI,t + Q̂t)

)
(71)

Investment increases with past investment and expected investment. It further increases with
the expectation of technology growth. By a similar argument as for consumption decisions,
investment is adjusted downwards in response to a realisation of larger contemporaneous tech-
nology growth shock. Furthermore, investment depends positively on investment augmenting
technology shocks. Lastly, by our definition of Tobin’s Q as the ratio of the marginal value of
capital to the marginal value of consumption, then deviation of investment from its steady state
is positively related to the deviation of Tobin’s Q.
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5.4 Prices, wages and exchange rates

In this section we state the relationships between different price indices and derive the Phillips
curves for domestic prices and wages. Export and import prices have analogous representations,
which we state, as well as analogous derivations, which we omit. The derivations that follow rely
on the general recursive solution stated and proved in Appendix A, section 7.1.5. All Phillips
curves have the same form, and a general Phillips curve associated with a good or service xt is
given by

πx,t = Et[πx,t+1] + κxΘx,t + Γx,t

where Θx,t is the cost associated with producing the good or service xt and Γx,t is the indexing
of the price to a related good or service. Thus, the price inflation of xt increases with expected
price inflation of xt+1 and with a rise in the cost of production of xt, assuming that κx is posi-
tive. This effect is either amplified or dampened by the indexation to the price of a related good,
through the term Γx,t.

In Appendix A, section 7.4.1, we derive the following representation of the domestic price index

Pt =
[
ᾱP 1−η

H,t + (1− ᾱ)P 1−η
F,t

] 1
1−η

In stationary form this becomes

1 = ᾱP
1−η
H,t + (1− ᾱ)P

1−η
F,t

The standard general solution method given in Appendix A, section 7.1.3, yields

0 = (1− α)P̂H,t + αP̂F,t (72)

where we have used that
lim
n→0

1− α = lim
n→0

(1− n)α = α

For an arbitrary price index Xt,28 we defined ΠX,t = Xt
Xt−1

. By assumption we have Xt = Xt
Pt

.
Easy algebra gives

ln(Xt)− ln(Xt−1) = πX,t − πP,t
where πX,t = ln(ΠX,t) and πP,t = ln(ΠP,t). As shown in Appendix C, X is finite, in fact
ln(X) = 0, and thus we get

πX,t = X̂t − X̂t−1 + πP,t (73)

For wages a similar argument shows that we have

πW,t = Ŵt − Ŵt−1 + πP,t + πZ,t (74)
28Be it PH,t, PF,t or P ∗H,t.
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5.4.1 Domestic prices

The first order condition for optimal price choice at time τ , Pτ , for firm i is given by equation
(33)

0 = Eτ

[ ∞∑
t=τ

θt−τH ∆t|τ,τAH,t|τ (1− εH,t)
(
Pτ
(
Pt−1

Pτ−1

)γh
−MH,tMCt|τ

)]

We have that AH,t|τ = AH,t|τZt; Πγh
H,(τ−1,t−1) = Π

γh
H,(τ−1,t−1); MCH,t|τ = MCH,t|τPt; Pτ =

PτPτ . Further, we define ντ,t|τ · βt−τ = Λτ,t|τ , and get: ντ,t|τ = ντ,t|τ ·
(
ZτPτ
ZtPt

)
. In what follows

we assume that ∆t|τ,t = Λτ,t|τ . We can thus write

Eτ
[∑

(θHβ)t−τντ,t|τ ·
(
ZτPτ
ZtPt

)
AH,t|τZt(1− εH,t)PτPτΠγh

H,(τ−1,t−1)

]
=Eτ

[∑
(θHβ)t−τντ,t|τ ·

(
ZτPτ
ZtPt

)
AH,t|τZt(1− εH,t)MH,tMCH,t|τPt

]

Divide both sides with ZτPτ , and we get

Eτ
[∑

(θHβ)t−τντ,t|τΠP,(τ,t)AH,t|τ (1− εH,t)PτΠγh
H,(τ−1,t−1)

]
=Eτ

[∑
(θHβ)t−τντ,t|τΠP,(τ,t)AH,t|τ (1− εH,t)MH,tMCH,t|τΠP,(τ,t)

]
Now we use the identity xt = x(1 + x̂t) and the fact that, approximately, x̂tŷt ≈ 0. Finally, we
approximate around a zero inflation steady state. It is readily verified that

S
(
ντ,t|τ

)
= S (ΠH,t) = S (ΠP,t) = 1

and we write

Eτ
[∑

(θHβ)t−τAH(1− εH)P · Y1,t(·)
]

≈Eτ
[∑

(θHβ)t−τAH(1− εH)MHMCH · Y2,t(·)
]

where

Y1,t(·) = (1 + ν̂τ,t|τ + πP,(τ,t) + ÂH,t|τ + ̂(1− εH,t) + P̂τ + γHπH,(τ−1,t−1))

and

Y2,t(·) =
(

1 + ν̂τ,t|τ + πP,(τ,t) + ÂH,t|τ + ̂(1− εH,t) + µH,t + M̂CH,t|τ + πP,(τ,t)

)
where we have written µH,t = M̂H,t. In steady state S(Y1,t) = S(Y2,t) = 1 and we clearly have
that in equilibrium

P =MHMCH (75)
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Cancelling terms gives:

Eτ

[
+∞∑
t=τ

(θHβ)t−τ
(
P̂τ + γHπH,(τ−1,t−1)

)]

≈Eτ

[
+∞∑
t=τ

(θHβ)t−τ
(
µH,t + M̂CH,t|τ + πP,(τ,t)

)]

Since P̂τ is independent of t we can write

P̂τ
(1− θHβ)

≈ Eτ

[
+∞∑
t=τ

(θHβ)t−τ
(
µH,t + M̂CH,t|τ + πP,(τ,t) − γHπH,(τ−1,t−1)

)]

We can apply the general recursive solution derived in Appendix A, section 7.1.5, given by

yτ = xτ + ωEτ (yτ+1) +
ω

1− ω
Eτzτ,τ+1

with

yτ =
P̂τ

(1− θβ)

xt = µH,t + M̂CH,t|τ

z(τ,t) = πP,(τ,t) − γHπH,(τ−1,t−1)

ω = θHβ

and we get

P̂τ
(1− θHβ)

=
(
µH,τ + M̂CH,τ |τ

)
+

θHβ

(1− θβ)
Eτ
[
P̂τ+1

]
+

θHβ

1− θβ
Eτ
[
πP,(τ,τ+1) − γHπH,(τ−1,τ)

]
(76)

or equivalently

P̂τ = (1− θHβ)
(
µH,τ + M̂CH,τ

)
+ θHβP̂τ+1

+ θHβ(Eτ [πP,(τ,τ+1)]− γHπH,τ ) (77)

Now turning to the law of motion for domestic prices, we have from equation (35) that

PH,t =

[
θH

((
PH,t−1

PH,t−2

)γH
PH,t−1

)1−εH,t
+ (1− θH)P1−εH,t

H,t

] 1
1−εH,t

Detrending we have

P
1−εH,t
H,t = θH

((
PH,t−1

PH,t−2

)γH (
Pt−1

Pt−2

)γH (Pt−1

Pt

)
PH,t−1

)1−εH,t

+ (1− θH)P1−εH,t
H,t
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Using Taylor approximation w.r.t. PH,t−1,PH,t−2, ΠP,t−1, ΠP,t−2 and εH,t, we get

P̂H,t = θH(γHπH,t−1 + P̂H,t−1 − πP,t) + (1− θH)P̂H,t (78)

which we rewrite as

P̂t =
1

1− θH

(
P̂H,t − θH(P̂H,t−1 − πP,t + γHπH,t−1)

)
(79)

For the sake of clarity we suppress the expectation operator in what follows, change the notation
to pH,t = P̂H,t, mcH,t = M̂CH,t, and write πP,t = πP,(t−1,t), πH,t = πH,(t−1,t). Furthermore, we
allow a slight abuse of notation and solve in terms of t rather than τ . Inserting equation (79)
into equation (77), we get

pH,t − θH(pH,t−1 − πP,t + γHπP,t−1) = (1− θH)(1− θHβ)(µt +mcH,t)

+ θHβpH,t+1

− θ2
Hβ (pH,t − πP,t+1 + γHπP,t)

+ (1− θH)θHβ(πP,t+1 − γHπP,t)

Add θHpH,t to both sides and isolate pH,t − pH,t−1 + πP,t = πH,t on the left side to get

πH,t =
θH − 1

θH
pH,t + γHπP,t−1

+ κ(µt +mcH,t) + βpH,t+1

− βθHpH,t + βθHπP,t+1 − βθHγHπP,t
+ (1− θH)β(πP,t+1 − γHπP,t)

where κ = (1−θH)(1−θHβ)
θH

. Now add βpH,t − βpH,t + βπP,t+1 − βπP,t+1 = 0 on the right side to
get

πH,t =
θH − 1

θH
pH,t + γHπP,t−1

+ κ(µt +mcH,t) + βπH,t+1 + βpH,t − βπP,t+1

− βθHpH,t + βθHπP,t+1 − βθHγHπP,t
+ (1− θH)β(πP,t+1 − γHπP,t)

Add and subtract κpH,t from the right side and we now have

πH,t =
θH − 1

θH
pH,t + γHπP,t−1

+ κ(µt +mcH,t − pH,t) + βπH,t+1 + βpH,t − βπP,t+1

− βθHpH,t + βθHπP,t+1 − βθHγHπP,t
+ (1− θH)β(πP,t+1 − γHπP,t) + κpH,t

Define

y =
θH − 1

θH
pH,t + βpH,t − βπP,t+1 − βθHpH,t + βθHπP,t+1 − βθHγHπP,t

+ (1− θH)βπP,t+1 − (1− θH)βγHπP,t + κpH,t + βγHπP,t
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and we can write

πH,t = κ(µt +mcH,t − pH,t) + βπH,t+1 + γH(πP,t−1 − βπP,t) + y (80)

Collecting terms in the expression for y:

y =pH,t

(
θH − 1

θH
+ β − βθH + κ

)
+ πP,t (βγh − βθHγH − (1− θH)βγH)

+ πP,t+1 (βθH − β + (1− θH)β)

Clearly βθH − β + (1− θH)β = 0 and βγh − βθHγH − (1− θH)βγH = 0 and thus

y = pH,t

(
θH − 1

θH
+ β − βθH + κ

)
We have

θH − 1

θH
+ β − βθH + κ =

θH − 1

θH
+ β − βθH +

(1− θH)(1− θHβ)

θH

=
θH − 1

θH
(−1 + 1− θHβ)) + β − βθH

= (θH − 1)β + β − βθH
= (θH − 1)β − (θH − 1)β

= 0

We conclude y = 0 and we can write

πH,t = κ(µt +mcH,t − pH,t) + βπH,t+1 + γH(πP,t−1 − βπP,t)

Bringing back our standard notation and the expectations operator, this implies

πH,t = κ(µt + M̂CH,t − P̂H,t) + βEt[πH,t+1] + γH(πP,t−1 − βπP,t) (81)

which is the New-Keynesian Phillips curve for domestic prices.

5.4.2 Wages

Let the subscript t | τ for an arbitrary variable denote its value at time t conditional on that the
last wage decision was at time τ . Then the first order condition for wage decision W at time τ
of household j is given by equation (38):

0 = Eτ

[ ∞∑
t=τ

θt−τW βt−τ (εW,t − 1)Nt|τ (j)MUC,t|τ (j)
Wτ (j)

Pt

(
Pt−1

Pτ−1

)γW Zt
Zτ

]

− Eτ

[ ∞∑
t=τ

θt−τW βt−τ (εW,t − 1)Nt|τ (j)MUC,t|τ (j)MW,tMRSt|τ (j)

]
(82)

where MW,t =
εW,t
εW,t−1 . We have Wτ (j)PτZτ = Wτ (j) and MUC,t(j)Zt = MUC,t(j), and thus

expressing all variables in stationary form gives

Eτ

[ ∞∑
t=τ

(θWβ)t−τ (1− εW,t)Nt|τ (j)MUCt|τ (j)
(
Wτ (j)Π−1

P,(τ,t)Π
γW
P,(τ−1,t−1)

)]

=Eτ

[ ∞∑
t=τ

(θWβ)t−τ (1− εW,t)Nt|τ (j)MUCt|τ (j)
(
MW,tMRSt|τ (j)

)]
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Recall that we defined MRSt|τ (j) = −MUN,t|τ (j)

MUC,t|τ (j)
. In the case of flexible wages, i.e. θW = 0, it is

clear that
Wτ (j) =MW,τMRSτ (j)

That is, households revise real wages at every period as a markup over the rate of marginal
substitution between labour and consumption, as we would expect. Assuming ΠP = 1, the exact
same logic and methods painstakingly employed for domestic price decisions, give

Ŵτ (j)

1− θWβ
≈ Eτ

∞∑
t=τ

(θWβ)t−τ (M̂W,t + M̂RSt|τ (j) + πP,(τ,t) − γWπP,(τ−1,t−1)) (83)

We seek an expression for the optimal wage decision that doesn’t depend on the timing of the
last wage decision explicitly. Furthermore, we want to express the marginal rate of substitution
of household j in terms of the average marginal rate of substitution of the economy. Appealing
to our assumption of complete markets and the implied perfect risk sharing,29 we do not trouble
ourselves with effects on consumption. We can write

Ct|τ (j) = Ct(j) = Ct

The general detrended marginal rate of substitution for household j at time t is given by

MRSt(j) = −MUN,t(j)

MUC,t(j)

where

MUC,t(j) = ZC,t

(
Ct(j)− hC

Ct−1

ΠZ,t

)−1

(84)

MUN,t = −χ (Nt(j)− hNNt−1)
ϕ (85)

which implies

M̂RSt(j) =
ϕ

1− hN
(N̂t(j)− hN N̂t−1)− ẐC,t

+
1

1− hC
(Ĉt(j)− hCĈt−1) +

hC
1− hC

πZ,t (86)

For an agent j at time t, conditional on wage reset at time τ , we have a similar expression under
our aforementioned assumption of complete markets and the resulting risk sharing:

M̂RSt|τ (j) =
ϕ

1− hN
(N̂t|τ (j)− hN N̂t−1|τ )− ẐC,t

+
1

1− hC
(Ĉt − hCĈt−1) +

hC
1− hC

πZ,t (87)

Furthermore, from the expression for conditional labour demand stated in equation (205), we
get

N̂t|τ (j) = −εW
(
Ŵt|τ (j)− Ŵt|τ

)
+Nt|τ (88)

29See discussion in section 5.3
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and we have
Ŵt|τ (j) = Ŵτ − πP,(τ,t) + γWπP,(τ−1,t−1) (89)

Therefore we can write

N̂t|τ (j) = −εW
(
Ŵτ − πP,(τ,t) + γWπP,(τ−1,t−1) − Ŵt|τ

)
+Nt|τ (90)

The law of motion of wages takes into account the proportion of the population which can
decide upon their wages and is independent of which households in particular reset their wages.
Aggregate labour demand depends on aggregate wages. Together this implies for all t > τ

Wt|τ = Wt and Nt|τ = Nt

We define the average marginal rate of substitution between labour and consumption as

M̂RSt =
ϕ

1− hN
(N̂t − hN N̂t−1)− ẐC,t

+
1

1− hC
(Ĉt − hCĈt−1) +

hC
1− hC

πZ,t (91)

We end up with the following expression

M̂RSt|τ (j)− M̂RSt = − εWϕ

1− hN

[
Ŵτ − πP,(τ,t) + γWπP,(τ−1,t−1) − Ŵt

]
(92)

Equation (83) thus becomes

νW Ŵτ ≈ Eτ
∞∑
t=τ

(θWβ)t−τ (M̂W,t + M̂RSt + πP (τ,t) − γWπP,(τ−1,t−1))

− Eτ
∞∑
t=τ

εWϕ

1− hN
(
γWπP,(τ−1,t−1) − πP,(τ,t) −Wt

)
where we have defined

νW =
1 + εWϕ(1− hN )−1

1− θWβ
In order to apply the general recursive solution from Appendix A, section 7.1.5, we define:

yτ =
1 + εWϕ(1− hN )−1

1− θWβ
Ŵτ

xt = M̂W,t + M̂RSt +
εWϕ

1− hN
Wt

z1,(τ,t) = πP (τ,t) − γWπP,(τ−1,t−1)

z2,(τ,t) = − εWϕ

(1− hN )

(
γWπ(τ−1,t−1) − π(τ,t)

)
zτ,t = z1,(τ,t) − z2,(τ,t)

It is clear that zτ,t satisfies the conditions

zt1,t3 = zt1,t2 + zt2,t3 and zt,s = −zs,t
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since these conditions are preserved under linear operations. For the sake of clarity we repress
the expectation operator in what follows.30 Inserting the relevant quantities into equation (136)
we get

νW Ŵτ = νW Ŵτ+1 + M̂W,τ + M̂RSτ +
εWϕ

1− hN
Wτ

+
θWβ

1− θWβ
πP (τ,τ+1) − γWπP,(τ−1,τ)

− θWβ

1− θWβ
εWϕ

(1− hN )

(
γWπP,(τ−1,τ) − πP,(τ,τ+1)

)
Rewriting gives

Ŵτ = (θwβ)Ŵτ+1 + κ1

(
M̂W,τ + M̂RSτ

)
+ κ2Wτ (93)

+ (θWβ)
(
πP (τ,τ+1) − γWπP,(τ−1,τ)

)
(94)

where κ1 = 1−θW β
a , κ2 = κ1 · (a− 1) and a = 1 + εwϕ(1− hN )−1.

We now turn to the law of motion for the wage index given in equation (39). Again similarly
to the price index case, we apply Taylor approximation to the law of motion for the wage index
and get

Ŵt =
θW

1− θW

(
πP,(t−1,t) − Ŵt−1 − γWπP,(t−2,t−1)

)
+

1

1− θW
Ŵt (95)

which we can rewrite as

Ŵt = Ŵt +
θW

1− θW
(
πW,(t−1,t) − πZ,(t−1,t) − γWπP,(t−2,t−1)

)
(96)

where, as previously defined, πW,(t−1,t) = Ŵt − Ŵt−1 + πP,(t−1,t) + πZ,(t−1,t). To avoid clutter
in the following derivation we hereafter write time indices of the type (t− 1, t) as simply t. Now
inserting equations (95) and (96) into equation (94) gives

θW
1− θW

(πW,t − πZ,t − γWπP,t−1) = (θwβ)
θW

1− θW

(
πP,t+1 − Ŵt − γWπP,t

)
+

θWβ

1− θW
Ŵt+1 + κ1

(
M̂W,t + M̂RSt

)
+ (θWβ) (πP,t+1 − γWπP,t)

+ κ2Ŵt − Ŵt

Multiply both sides with 1−θW
θW

, isolate πW,t, and we get

πW,t = (θwβ)
(
πP,t+1 − Ŵt − γWπP,t

)
+ βŴt+1 + κW

(
M̂W,t + M̂RSt

)
+ κP (πP,t+1 − γWπP,t)

+ κLŴt −
1− θW
θW

Ŵt + πZ,t + γWπP,t−1

30Bear in mind that all quantities are expected values conditional on information available at time τ . Suppressing
the expectation operator has no bearing on the calculations since it is preserved over linear operations.
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where κW = (1−θW )(1−θW β)
θW a , κL = κW (a− 1), and κP = (1− θW )β. Add and subtract βπW,t+1

from the right side and we get

πW,t = βπW,t+1 + κW

(
M̂W,t + M̂RSt

)
+ (θwβ)

(
πP,t+1 − Ŵt − γWπP,t

)
+ βŴt+1 + κLŴt

+ κP (πP,t+1 − γWπP,t)

− 1− θW
θW

Ŵt + πZ,t + γWπP,t−1

− βŴt+1 + βŴt − βπZ,t+1 − βπP,t+1 (97)

where we use, as previously defined, πW,t+1 = Ŵt+1 − Ŵt + πZ,t+1 + πP,t+1. Notice now that
collecting coefficients in terms containing the variable Ŵt gives

κL − θWβ −
1− θW
θW

+ β = κW (a− 1)− θWβ −
1− θW
θW

+ β

=
(1− θW )(1− θWβ)

θW
− θβ − 1− θW

θW
+ β − κW

= −κW

and we can rewrite equation (97) as

πW,t = βπW,t+1 + κWΩt + (θwβ) (πP,t+1 − γWπP,t)
+ κP (πP,t+1 − γWπP,t) + πZ,t + γWπP,t−1

− βπZ,t+1 − βπP,t+1

where Ωt =
(
M̂W,t + M̂RSt − Ŵt

)
. Now add and subtract γWβπP,t and we can write

πW,t = βπW,t+1 + κWΩt + γW (πP,t−1 − βπP,t)
+ (θwβ) (πP,t+1 − γWπP,t) + κP (πP,t+1 − γWπP,t)
+ πZ,t − βπZ,t+1 − βπP,t+1 + βγWπP,t

Collect like terms to get

πW,t = βπW,t+1 + κW

(
M̂W,t + M̂RSt − Ŵt

)
+ γW (πP,t−1 − βπP,t)

+ πZ,t − βπZ,t+1

+ πP,t+1(θWβ + κP − β)

+ πP,tγW (β − θWβ − κP )

Recall that all variables at time t+ 1 are expected values at time t. We can thus write

πZ,t − βEt[πZ,t+1] = πZ,t − βEt[ρZπZ,t + εZ,t]

= (1− βρZ)πZ,t
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We then get

πW,t = βπW,t+1 + κWΩt + γW (πP,t−1 − πP,t) + (1− βρZ)πZ,t + xt (98)

where
xt = πP,t+1(θWβ + κP − β)− πP,tγW (θWβ + κP − β)

We contend that xt = 0. For this to be true it most hold that

(θWβ + κP − β) = 0

But this is clearly so since κP = (1−θW )β. The New-Keynesian Phillips curve for wage inflation
in the non-suppressed notation is thus given by

πW,t = βEt[πW,t+1] + κW

(
µW,t + M̂RSt − Ŵt

)
+ γW (πP,t−1 − βπP,t) + (1− βρZ)πZ,t (99)

5.4.3 Import and export prices

Since the derivation of import and export prices are almost identical to those of domestic prices
and wages they are omitted.

The New-Keynesian Phillips curve for import prices is given by

πF,t = κF (µF,t + M̂C
∗
H,t − P̂F,t) + βEt[πF,t+1] + γH(πP,t−1 − βπP,t) (100)

where
κF =

(1− θF )(1− θFβ)

θF

1− ψF
1− ψF − ψF εF

and
pF,t − pF,t−1 + πP,t = πF,t

The New-Keynesian Phillips curve for export prices is given by

π∗H,t = κ∗H(µ∗H,t + M̂C
∗
H,t − P̂ ∗H,t − Ŝt) + βEt[π∗H,t+1] + γ∗H(π∗P,t−1 − βπ∗P,t) (101)

where
κ∗H =

(1− θ∗H)(1− θ∗Hβ)

θ∗H

and
p∗H,t − p∗H,t−1 + π∗P,t = π∗H,t

Note that the difference between κF , κ∗H and κH is inconsequential for the estimation process
since there is only one degree of freedom, and we thus calibrate all parameters other than θ.31
Since we model the foreign economy as a simple VAR model on output, inflation and interest
rates, we must map those variables to the foreign marginal cost. We do so in an ad-hoc fashion,
defining

M̂C
∗
H,t = η∗mc,yŶ

∗
t (102)

31This assumes, naturally, that the prior distributions are sensible.
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5.4.4 Exchange rates

Recall that we define the real exchange rate as

St = ξt
P ∗t
Pt

Thus, the gross growth of the real exchange rate is a stationary series and we write

St
St−1

=
ξt
ξt−1

Π∗P,t
ΠP,t

Percentage deviation from the steady state is given by

Ŝt = Ŝt−1 + πξ,t + π∗P,t − πP,t (103)

Terms of trade are defined as
Tt =

PF,t
ξtP ∗H,t

which in stationary form we write as

Tt =
PF,t

P
∗
H,t

1

ξt

Pt
P ∗t

=
1

St

PF,t

PH,t

and log-linearising gives
T̂t = P̂F,t − P̂ ∗H,t − Ŝt (104)

5.5 Market equilibrium

5.5.1 Export market

Equation (200) specifies the equilibrium production of specialised exports as

EXE,t = min

(
ZE,tKE,t,

αe
1− αE

EXg,t

)
which can be written stationary form as

EXE,t = min(ZE,tK,
αe

1− αE
EXg,t)

We additionally assume that in steady state it holds that:

ZEK ≤
αE

1− αE
EXg

By definition we have EXE = αE
1−αEEXg. By the argument given in Appendix A, section 7.1.3,

regarding linearisation of the minimum operator we can write

ÊXE,t = ẐE,t (105)
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Turning to the generic export firms, we have from equation (199) that

EXg,t = (1− αE)α∗
(
P ∗H,t
P ∗t

)−η (1− Γ∗H,t − EXg,t
∂Γ∗H,t
∂EXg,t

)η
1− Γ∗H,t

A∗t

Detrended, the equation takes the form

EXg,t = (1− αE)α∗
(
P
∗
H,t

)−η (1− Γ∗H,t − EXg,t
∂Γ∗H,t
∂EXg,t

)η
1− Γ∗H,t

A
∗
t

Z∗t
Zt

In order to log-linearise the equation above we use mixed methods. Applying the natural loga-
rithm function to both sides of the equation we get

lnEXg,t = ln((1− αE)α∗)− η lnP
∗
H,t

+ η ln

(
1− Γ∗H,t − EXg,t

∂Γ∗H,t
∂EXg,t

)
− ln(1− Γ∗H,t)

+ lnA
∗
t + lnZ∗t − lnZt

We can use the approximation identity

k lnXt = k lnX + kX̂t, for k ∈ R

to get

η lnP
∗
H,t = η lnP

∗
H + ηP̂ ∗H

lnA
∗
t = lnA

∗
+ Â∗

lnZD,t = ẐD,t

where we have defined ZD,t = Zt
Z∗t

. Further, recall the definition of the export adjustment cost,
which at equilibrium becomes

Γ∗H,t =
θ∗M
2

(
EX∗g,t
A∗t

A∗t−1

EX∗g,t−1

− 1

)2

It is immediately clear that

Γ∗H,t|ss =
∂Γ∗H,t
∂Xt

∣∣∣∣
ss

= 0

where Xt ∈ {EX∗g,t, EX∗g,t−1, A
∗
t , A

∗
t−1}. We thus get

ÊXg,t = Â∗t − ηP̂ ∗H − ẐD,t + g(ÊXg,t, Â
∗
t , ÊXg,t−1, Â

∗
t−1) (106)

where g(ÊXg,t, Â
∗
t , ÊXg,t−1, Â

∗
t−1) contains the approximation of the two terms

η ln

(
1− Γ∗H,t − EXg,t

∂Γ∗H,t
∂EXg,t

)
, and ln(1− Γ∗H,t)
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which we now turn to writing in terms of deviations from steady state. To that end we use
Taylor approximation. For the sake of parsimony and brevity we write the approximation in a
one-dimensional general form. We start by looking at the latter term. We have

ln(1− Γ∗H,t) ≈ −
∂Γ∗H,t
∂Xt

∣∣∣∣
ss

(1− Γ∗H,t)
−1|ss(Xt −X)

Since ∂Γ∗H,t
∂Xt

∣∣∣∣
ss

= 0 we get

ln(1− Γ∗H,t) ≈ 0

Turning to the other term, let us begin by defining, for ease of exposition, the expression

GX,t = 1− Γ∗H,t − EXg,t

∂Γ∗H,t
∂Xt

and we have

ln
(
GEXg,t

)
≈ ln

(
GX,t|ss

)
−

∂Γ∗H,t
∂Xt

∣∣∣
ss

GEXg,t
∣∣
ss

(Xt −X)

−

(
∂EXt
∂Xt

∂Γ∗H,t
∂EXg,t

+ EXg,t
∂2Γ∗H,t

∂Xt∂EXg,t

)∣∣∣
ss

GEXg,t
∣∣
ss

(Xt −X)

= −EXg

∂2Γ∗H,t
∂Xt∂EXg,t

∣∣∣∣∣
ss

(Xt −X)

Now we need to find the second partial derivative of the export adjustment cost function with
respect to the four variables. We have

∂Γ∗H,t
∂EXt

= θ∗M

(
EXg,t

A∗t

A∗t−1

EXg,t−1
− 1

)
·
(

1

A∗t

A∗t−1

EXg,t−1

)
and we calculate

∂2Γ∗H,t
∂EX2

g,t

∣∣∣∣∣
ss

= φ∗m

(
1

A∗t

A∗t−1

EXg,t−1

)2
∣∣∣∣∣
ss

=
φ∗m
EX2

g

∂2Γ∗H,t
∂EXg,t−1∂EXg,t

∣∣∣∣∣
ss

=
−φ∗m
EX2

g

∂2Γ∗H,t
∂A∗t∂EXg,t

∣∣∣∣∣
ss

=
−φ∗m
A∗EXg

∂2Γ∗H,t
∂A∗t−1∂EXg,t

∣∣∣∣∣
ss

=
φ∗m

A∗EXg
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and we can write

η ln

(
1− Γ∗H,t − EXg,t

∂Γ∗H,t
∂EXg,t

)
− ln(1− Γ∗H,t) = −ηEXg

φ∗m
EX2

g

(EXg,t − EXg)

+ ηEXg
φ∗m
EX2

g

(EXg,t−1 − EXg)

+ ηEXg
−φ∗m
A∗EXg

(A∗t −A)

− ηEXg
φ∗m

A∗EXg

(
A∗t−1 −A

)

which can be rewritten in terms of g(·) as

g(ÊXg,t, Â
∗
t , ÊXg,t−1, Â

∗
t−1) = ηφ∗m

(
ÊXg,t−1 − ÊXg,t − Ât−1 + Ât

)
(107)

Inserting this expression for g(·) into equation (106) we get

ÊXg,t = Â∗t − ηP̂ ∗H − ẐD,t + ηφ∗m

(
ÊXg,t−1 − ÊXg,t − Ât−1 + Ât

)
(108)

collecting terms and simplifying we finally get

ÊXg,t = Â∗t −
η

1 + ηφ∗m
P̂ ∗H +

ηφ∗m
1 + ηφ∗m

(
ÊXg,t−1 − Ât−1

)
− 1

1 + ηφ∗m
ẐD,t (109)

Finally, by definition we have EXt = EXg,t + EXE,t. Now, assuming that EXE
EX = αE , implies

EXg = (1− αE)EX. Thus we get

ÊXt = (1− αE)ÊXg,t + αEÊXE,t (110)

5.5.2 Import market

From equation (202) we have that import is given by

IMt = α

(
PF,t
Pt

)−η
At

which detrended becomes
IM t = αP

−η
F,tAt (111)

Via our standard methods we get
ÎM t = Ât − ηP̂F,t (112)

5.6 Output and net exports

5.6.1 Aggregate output

Now we turn to aggregate domestic output per capita. From equation (201) we have

YH,t = Y hH,t + EXt
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Detrending gets us
Y H,t = Y

h

H,t + EXt

From our discussion in Appendix A, section 7.1.3, we know that we can write

ŶH,t =
Y hH
YH

Ŷ hH,t +
EX

YH
ÊXt

But we know that Y hH
Y = (1 − α) and EX

Y = α from the derivations in Appendix C. It is thus
clear that

YH
Y

=
Y hH
Y

+
EX

Y
= 1

That is to say YH = Y , and we thus get

ŶH,t = (1− α)Ŷ hH,t + αÊXt (113)

We have yet to express Y hH,t in percentage deviation from steady state, to that end we recall that
equation (198) states

Y hH,t = (1− α)

(
PH,t
Pt

)−η
At

which detrended becomes
Y
h

H,t = (1− α)
(
PH,t

)−η
At

Using our standard methods we get

Ŷ hH,t = −ηP̂H,t + Ât (114)

5.6.2 Real GDP

Real GDP per capita is given by equation (50)

Yt = (1− α)

(
PH,t
Pt

)1−η

Tαt At +
EtP ∗H,t
PY,t

EXt

Detrended, we have:

Y t = (1− α)
(
PH,t

)1−η
Tαt At +

StP
∗
H,t

PY,t
EXt

Using the substitution method we get

Y (1 + Ŷt) = (1− α)PH(1 + (1− η)P̂H,t)T (1 + αT̂ )A(1 + Ât)

+ S(1 + Ŝt)P
∗
H(1 + P̂ ∗H,t)P

∗
Y (1− P̂ ∗Y,t)EX(1 + ÊXt)

= A(1− α)(1 + (1− η)P̂H,t)(1 + αT̂ )(1 + Ât)

+ EX(1 + Ŝt)(1 + P̂ ∗H,t)(1− P̂ ∗Y,t)(1 + ÊXt)
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where we used PH = P ∗H = S = T = 1, as shown in Appendix C. Recall our assumption that
multiplication of two percentage deviations from steady state are negligible, which yields

Y + Y Ŷt = (1− α)A(1 + (1− η)P̂H,t + αT̂t + Ât)

+ EX(1 + P̂ ∗H,t + Ŝt − P̂Y,t + ÊXt)

Using Y = (1− α)A+ EX from Appendix C, and cancelling out common terms gives

Y Ŷt = A
(

(1− α)(1− η)P̂H,t + αT̂t + (1− α)Ât)
)

+ EX
(
ÊXt + P̂ ∗H,t + Ŝt − P̂Y,t

)

Now dividing by Y = A and using the fact that EX = αY , we get

Ŷt = (1− α)(1− η)P̂H,t + (1− α)Ât

+ α(Ŝt + P̂ ∗H,t + ÊXt) + α((1− α)T̂ − P̂Y,t)

Recall that we define
PY,t = PtP

−α
F,t (ξtP

∗
H,t)

α = PtT
−α
t

and we have
P̂Y,t = −αT̂ (115)

We rewrite our expression for real GDP as

Ŷt = (1− α)(1− η)P̂H,t + (1− α)Ât + α(Ŝt + P̂ ∗H,t + ÊXt)− P̂Y,t (116)

We can further rewrite the last equation using the already established relations

ÎMt = Ât − ηP̂F,t, and (1− α)PH,t = αPF,t

along with the definition of the terms of trade and the GDP deflator, to get

Ŷt = Ât + ÊXt − ÎM t

The output gap can thus be expressed as the weighted percentage deviation of GDP’s subcom-
ponents.32

5.6.3 Net export

Net export per capita is given by equation (48):

NXt = EXt − TtIMt

Detrended it becomes
NXt = EXt − TtIM t

32Recall that Ât = C
Y
Ĉt + I

Y
Ît + G

Y
Ĝt + M

A
M̂t.
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Since we can’t assume that the steady state of net exports is non-zero, we can’t derive NXt as
a percentage deviation from its steady state. We therefore find the deviation from the steady
state as a percentage of GDP. First order Taylor approximation gives:

NXt −NX ≈ (EXt − EX)− T (IM t − IM)− IM(Tt − T )

= EX
(EXt − EX)

EX
− T · IM (IM t − IM)

IM
− T · IM (Tt − T )

T

= EXÊXt − IMÎM t − IMT̂

= αAÊXt − αAÎM t − αAT̂

= αA(ÊXt − ÎM t − T̂ )

where we again used that T = 1, EX = IM = αA, justified in Appendix C. Next we divide
with the steady state of real GDP and get

N̂Xt =
NXt −NX

Y
= N̂Xt = α(ÊXt − ÎM t − T̂ ) (117)

where we use the previously stated fact that Y = A.

5.7 Public policy

5.7.1 Monetary policy

In stationary form, monetary policy response function is given by:

Rt
R

= ZR,t

(
Rt−1

R

)ξR [(ΠP,t

ΠP

)φP (Y t
Y

)φY (
Y t

Y t−1

)φ∆Y
]1−ξR

(118)

By simply taking the logarithm of both sides, we get

R̂t = ξRR̂t−1 + (1− ξR)
[
φPπP,t + φY Ŷt + φ∆Y

(
Ŷt − Ŷt−1

)]
+ zR,t (119)

where we used the assumption ZR = 1 and the fact that for a stationary series Xt it follows that

ln

(
Xt

Xt−1

)
= ln

(
XtX

Xt−1X

)
= ln

(
Xt

X

)
− ln

(
Xt−1

X

)
= X̂t − X̂t−1

5.7.2 Government spending

Lastly, to close the model we assume that government spending is exogenous, dictated by the
following stochastic process

Ĝt = ρgĜt−1 + εG,t (120)
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5.8 Exogenous shocks

A stochastic process of the form

xt = α1−ρxρt−1e
εt , ρ ∈ (0, 1)

has the steady state x = α and we can write

ln(xt)− ln(α) = (1− ρ) ln(α) + ρ ln(xt−1) + εt − ln(α)

which reduces to
x̂t = ρ (ln(xt−1)− ln(α)) + εt = ρx̂t−1 + εt

Therefore, all the presented stochastic processes have this form in percentage deviation from the
steady state, given by:

Ẑk,t = ρkẐk,t−1 + εk,t (121)
µl,t = ρµlµl,t−1 + εµl,t (122)
µ∗H,t = ρ∗µHµ

∗
H,t−1 + ε∗µH ,t (123)

for k ∈ {B,C, I,D,H,R} and l ∈ {H,F,W}. Lastly, the permanent technology shock is written

πZ,t = ρπZ,t−1 + εZ,t (124)

All shocks are normally distributed with zero mean, and non-identical variances.

5.9 Foreign economy

Since the domestic economy is treated as a small economy, we can assume that the foreign
economy is independent of domestic shocks. For our purposes we assume that the foreign economy
is sufficiently well described by a simple VAR model. Let x∗t = [Ŷ ∗t π̂∗t R̂∗t ]

′ and we presume
that the foreign economy evolves in accordance with

x∗t+1 = Ξx∗t + ε∗t+1 (125)

where ε∗t+1 ∼ N(0,Σ∗) and Ξ, Σ∗ are 3 × 3 matrices. In estimation, we assume that Σ∗ is a
diagonal matrix.

6 Summary of the linearised model

Following is a list of the estimated model equations. In front of each equation is the equation
number in the handbook. Note that the UIP has been modified with a backward-looking term
and a smoothing parameter.

Prices and costs

(60) : Ŝt = δSE[Ŝt+1] + (1− δS)Ŝt−1 − (R̂t − E[πP,t+1]) + (R̂∗t − E[π∗P,t+1])− γB,t
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(103) : Ŝt = Ŝt−1 + πξ,t + π∗P,t − πP,t

(104) : T̂t = P̂F,t − P̂ ∗H,t − Ŝt

(57) : R̂Kt = N̂S,t + Ŵt − K̂t

(58) : M̂Ct = (1− ψH)Ŵt + ψHR̂
K
t − (1− ψH)ẐH,t

(72) : P̂H,t = − α
1−α P̂F,t

(81) : πH,t = κH(µt + M̂CH,t − P̂H,t) + βEt[πH,t+1] + γH(πP,t−1 − βπP,t)

(73) : πH,t = P̂H,t − P̂H,t−1 + πP,t

(101) : π∗H,t = κ∗H(µ∗H,t + M̂C
∗
H,t − P̂ ∗H,t − Ŝt) + βEt[π∗H,t+1] + γ∗H(π∗P,t−1 − βπ∗P,t)

(73) : π∗H,t = P̂ ∗H,t − P̂ ∗H,t−1 + π∗P,t

(100) : πF,t = κF (µF,t + M̂C
∗
H,t − P̂F,t) + βEt[πF,t+1] + γH(πP,t−1 − βπP,t)

(73) : πF,t = P̂F,t − P̂F,t−1 + πP,t

(115) : P̂Y,t = −αT̂t

Household decisions

(59) : Ĉt = hC
1+hc

Ĉt−1 + 1
1+hC

Et[Ĉt+1]− 1−hC
1+hC

Et[R̂t − πt+1] + 1
1+hC

Et[πZ,t+1]

− hC
1+hC

πZ,t − 1−hC
1+hC

Et[πZC ,t+1]

(68) : Q̂t(j) = −Et
[
R̂t − πP,t+1

]
+ (1− ωq)Et

[
R̂Kt+1

]
+ ωqEt

[
Q̂t+1

]
(64) : K̂t = Ût + K̂S,t − Π̂Z,t

(66) : K̂S,t+1 = (1− δ)(K̂S,t − Π̂Z,t) + δ(Ît + ẐI,t)

(63) : R̂Kt = λU Ût

(71) : Ît = 1
1+β

(
βE[Ît+1 + πZ,t+1] + Ît−1 − πZ,t + λI(ẐI,t + Q̂t)

)
(99) : πW,t = βEt[πW,t+1] + κW (M̂RSt − Ŵt + µW,t) + γW (πP,t−1 − βπP,t)

+ (1− βρ)πZ,t

(74) : πW,t = Ŵt − Ŵt−1 + πP,t + πZ,t

(91) : M̂RSt = ϕ
1−hN (N̂t − hN N̂t−1)− ẐC,t + 1

1−hC (Ĉt − hCĈt−1) + hC
1−hC πZ,t

(61) : γB,t = θBb
∗
H,t+1 + zB,t

(62) : b∗H,t+1 = β−1b∗H,t + N̂Xt

(56) : N̂S,t = 1
1−~N̂t
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Monetary policy and government

(119) : R̂t = ξRR̂t−1 + (1− ξR)
[
φPπP,t + φY Ŷt + φ∆Y

(
Ŷt − Ŷt−1

)]
+ zR,t

(120) : Ĝt = ρgĜt−1 + εG,t

Market equilibrium

(114) : Ŷ hH,t = −ηP̂H,t + Ât

(113) : ŶH,t = (1− α)Ŷ hH,t + αÊXt

(55) : ŶH,t = ψHK̂t + (1− ψH)(N̂S,t + ẐH,t)

(116) : Ŷt = (1− α)(1− η)P̂H,t + (1− α)Ât + α(Ŝt + P̂ ∗H,t + ÊXt)− P̂Y,t

(109) : ÊXg,t = Â∗t +
ηφ∗m

1+ηφ∗m

(
ÊXg,t−1 − Â∗t−1

)
− η

1+ηφ∗m
P̂ ∗H,t − 1

1+ηφ∗m
ẐD,t

(105) : ÊXE,t = ẐE,t

(110) : ÊXt = (1− αE)EXE,t + αEEXg,t

(112) : ÎM t = Ât − ηP̂F,t

(117) : N̂Xt = α(ÊXt − ÎM t − T̂ )

where composite parameters are defined in the following way

κH =
(1− θH)(1− θHβ)

θH

κF =
(1− θF )(1− θFβ)

θF

1− ψF
1− ψF − ψF εF

κW =
(1− θW )(1− θWβ)

θW

1

(1 + εWϕ(1− hN )−1)

κ∗H =
(1− θ∗H)(1− θ∗Hβ)

θ∗H
ωq = (1− δ)β

Foreign economy

(125) : x∗t+1 = Ξx∗t + ε∗t+1

(102) : M̂C
∗
t = η∗mc,yÂ

∗
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Stochastic processes

(121) : Ẑi,t = ρiẐi,t−1 + εi,t

(122) : µj,t = ρµjµj,t−1 + εµj ,t

(123) : µ∗H,t = ρ∗µHµ
∗
H,t−1 + ε∗µH ,t

(124) : πZ,t = ρπZ,t−1 + εZ,t

where i ∈ {B,C, I,D,H,R} and j ∈ {H,F,W}
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7 Appendix A

7.1 Solution methods

We assume that the reader is well versed in optimisation techniques taught in most undergraduate
economics programs. In this subsection we give a brief description of less familiar solution
methods used to solve the optimisation problems of agents and firms in the upcoming sections.

7.1.1 Lagrangian multiplier on Banach Spaces

We will denote an arbitrary sequence {x}∞n=1 as x, i.e. omitting the index. Let `∞ ⊂ RN be the
space of all bounded sequences over the real numbers and define Xk =

∏k
1 `
∞, then an arbitrary

element of Xk is denoted as33
z = (x1, x2, . . . , xk)

where xi ∈ `∞, for all i. We denote the t-th realisation of z in terms of the t-th realisation of
each subsequence in the natural way

zt = (x1,t, x2,t, . . . , xk,t)

We proceed by defining the functions f : Xk → R and g : Xk → RN by:

f(z) = Eτ

[ ∞∑
t=τ

h(zt)

]
, h : Rk → R

and
g(z) = (ζ0, ζ1, . . . , ζt, . . . )

where ζt represents the relevant constraints at time t. We assume that h and ζt are continuously
differentiable functions for all t. Given a sequence xi ∈ `∞, we can define the norm

‖xi‖∞ = sup
t
|xi,t|

and `∞ is a Banach space with respect to that norm. A finite product of Banach spaces is itself
Banach via the norm

‖z‖ =

k∑
i=1

‖xi‖

Thus it is clear that Xk is a Banach space and the extended methods of Lagrange multipliers
applies to the problem of maximising f(z) with the constrain that g(z) = 0 (see Zeidler (1995,
p. 270-271) for proof and details). Thus there exists λ : RN → R, such that

Df(z) = λ ◦Dg(z)

In particular, we have
Df(z) = 〈λ,Dg(z)〉

33One can think of Xk as RN, by thinking of the k sequences as one sequence interlaced. For example, if
{v}∞t=1 and {u}∞t=1 are two arbitrary sequences, we can map them to the sequence {x}∞t=0, where x2k+1 = uk+1,
x2k = vk+1.
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where Df(z) : Xk → R and Dg(z) : Xk → RN represent the Fréchet derivatives of f and g,
respectively, at z. It is well known that the Fréchet derivatives can be characterised by the
directional derivative, i.e.

Df(z)ei =
d

dt
[f(z + tei)|t=0

Thus, a necessary condition for maximisation is given in terms of the partial derivatives of f and
g with respect to each variable at each time.34

7.1.2 Functional derivatives

Let J [f ] be a functional on the normed space of k continuously differentiable functions, Ck, and
we say that J [f ] is differentiable and δJ [h] is the principle linear part of J at f if, for f, h ∈ Ck,
we can write

J [f + h]− J [f ] = δJ [h] + ε||h||

such that ε→ 0, when ||h|| → 0. We have that J [f ] attains a local extrema at f̂ only if δJ [h] = 0,
for f = f̂ and all admissible functions h (see Gelfand and Fomin (2000)). Using Taylor expansion
we can extract the principle linear part as

δJ [h] =
d

dε
J [f + εη]

∣∣∣
ε=0

Note that this is analogous to the finite dimensional case. For a sufficiently well behaved function
f : Rn → R, we define

d

dε
f [x+ εh]

∣∣∣
ε=0

= ∇f · h = 〈∇f, h〉

Defining the inner product on Ck as

〈u, v〉 =

∫
[a,b]

u(x)v(x)

for u, v ∈ Ck. We get

δJ [f ] =

〈
∂J [f ]

∂f
, η

〉
for an arbitrary η ∈ Ck, and we call ∂J[f ]

∂f the functional derivative. One of the themes of
optimisation theory of functionals is that a vanishing functional derivative is a necessary criterion
for a local extrema.

Let us suppose that we are tasked with minimising a functional of the form

J [f ] = L = βG[f ]α − ν

(∫
[a,b]

wfdx−Θ

)
dx

where G is functional, ν,Θ, a, b, α, β ∈ R, and w ∈ Ck. We get

δJ [h] = βαG[f ]α−1 · δG[h]− ν
∫

[a,b]

wηdx = 0

34The details of the interplay between expectations and derivative is omitted here. We can interchange the
order of expectations and derivatives by invoking the Leibnitz rule and assuming that the underlying probability
distributions are well behaved.
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Further suppose that G[f ] =
∫

[a,b]
fγdx. Then

δG[f ] =

∫
[a,b]

γfγ−1ηdx

and we get ∫
[a,b]

(
βαG[f ]α−1γfγ−1 − νw

)
ηdx = 0

Since η is arbitrary, we have from the fundamental lemma of calculus of variations that

βαG[f ]α−1γfγ−1 − νw = 0

If we assume α = γ−1 and f > 0, we finally get that J attains a local extrema at f , which
satisfies

βG[f ]
1−γ
γ fγ−1 − νw = 0 (126)

A result that will become more familiar in following sections. For details and more information
see Gelfand and Fomin (2000), Zeidler (1995), Giaquinta and Hildebrandt (2004).

7.1.3 Linearisation methods

Standard general methods

Let y be the steady state of a stationary variable of interest, yt, then the percentage devia-
tion from steady state, ŷt, is given by

ŷt =
yt − y
y

A common approximation is

ŷt ≈ ln

(
yt
y

)
= ln yt − ln y

which is justified by noting that the first order Taylor approximation around 0 gives

ln(1 + x) ≈ x

for a general variable x. Thus we have

ŷt ≈ ln (1 + ŷt) = ln

(
1 +

yt − y
y

)
= ln

(
yt
y

)
which is a good approximation when yt is sufficiently close to its steady state. We illustrate how
to find the percentage deviation from steady state for four types of functional forms, which gives
us the tools to find the steady state deviations of most encountered cases. We refer to these
methods as the standard general methods in the text. The examples are

(1) yt = kxt, (2) yt = xkt

(3) yt = x1,t · x2,t, (4) yt = x1,t + x2,t
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1. The equation yt = kxt gives steady state y = kx and we can write

ŷt =
kxt
kx
− 1 = x̂t

2. The log-lin approximation gives

ŷt = ln yt − ln y

= k lnxt − k lnx

= kx̂t

3. The log-lin approximation gives

ŷt = ln yt − ln y

= lnx1,t + lnx2,t − (lnx1 + lnx2)

= x̂1,t + x̂2,t

4. From the definition yt
y − 1 = ŷt, we can equivalently write yt ≈ y (1 + ŷt). This gives

y (1 + ŷt) ≈ x1 (1 + x̂1,t) + x2 (1 + x̂2,t)

Clearly y = x1 + x2, which cancel out, and we get

ŷt =
x1

y
x̂1,t +

x2

y
x̂2,t

Substitution method

Let xt and yt be stationary time series. The definition of the percentage deviation from steady
state allows us to write

xt = (1 + x̂)x, and yt = (1 + ŷ)y

We will presuppose that x̂2
t ≈ ŷ2

t ≈ x̂tŷt ≈ 0. Let n,m ∈ N, it follows that

xnt y
m
t

xnym
= (1 + x̂)n(1 + ŷ)m

=

(
n∑
i=0

aix̂
i
t

)(
m∑
i=0

biŷ
i
t

)

where ai =
(
n
i

)
and bi =

(
m
i

)
, and thus a1 = n and b1 = m. The assumption x̂2 ≈ ŷ2 ≈ 0 allows

us to write (
n∑
i=0

aix̂
i
t

)(
m∑
i=0

biŷ
i
t

)
≈ (1 + nx̂t)(1 +mŷt)

and our presupposition of x̂tŷt ≈ 0 gives

(1 + nx̂t)(1 +mŷt) ≈ 1 + nx̂t +mŷt

which in turn implies

x̂nt y
m
t =

xnt y
m
t

xnym
− 1 ≈ nx̂t +mŷt
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The result above can naturally be extended to n,m ∈ Z. We refer to the method descried above
as the substitution method.

Taylor approximation

Let a stationary variable of interest be given by35

yt = g(xt, zt)

We can get the deviation of yt from its steady state by employing first order Taylor approximation
on the natural logarithm of yt. We get

ln yt ≈ ln y +
∂g(xt, zt)

∂xt

∣∣∣∣
ss

g(x, z)−1(xt − x) +
∂g(xt, zt)

∂zt

∣∣∣∣
ss

g(x, z)−1(zt − z)

using ŷt ≈ ln yt − ln y we get

ŷt ≈
x

y

∂g(xt, zt)

∂xt

∣∣∣∣
ss

x̂t +
z

y

∂g(xt, zt)

∂zt

∣∣∣∣
ss

ẑt

where we have substituted y−1 = g(x, z)−1. This method is the Taylor approximation method.

Linearisation of the max and min operators

To log-linearise the maximum or minimum operators we can approximate the quantities with the
LogSumExp function.36 We then proceed by finding the Taylor approximation of LogSumExp
valuation around the steady state. We will only treat the maximum but remind the reader of
the fact that

min(x, y) = −max(−x,−y)

We define the LogSumExp function as

L(x, z) = ln(ex + ez) (127)

Let yt = max(xt, zt) ≈ L(xt, zt) and the Taylor approximation around the steady state gives

yt ≈ y +
ex

ey
(xt − x) +

ez

ey
(zt − z) (128)

which implies

ŷt ≈
ex

ey
x

y
x̂t +

ez

ey
z

y
ẑt (129)

Note that the steady state of y is either x or z. Assume without loss of generality that y = x
and we get

ŷt = x̂t + δẑt (130)
where δ = ez

ey
z
y . Note that if y >> z, then δ is approximately 0, i.e. ŷt ≈ x̂t. For the minimum

we get a similar result with the roles reversed. Further note that if xt ≈ zt, we get

yt ≈ L(xt, xt) = ln(ext + ext) = ln(2) + xt

and we deduce that
ŷt ≈ x̂t

35We demonstrate the two variable case, but the method can easily be extended to the case of arbitrary finite
number of variables.

36The LogSumExp is a good approximation if we expect one of the variables to be a good deal larger than the
other.
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7.1.4 Linearisation and the expectation operator

When we encounter the expectation operator we need to be careful in applying the standard
log-linearisation methods aforementioned. The biggest reason being Jensen’s inequality, which
states that for a random variable, X, and a concave function, f , we have the inequality

f (E[X]) ≥ E [f(X)]

In the case when f is linear the condition holds with equality. Since the natural logarithm
operator is a concave function we can’t apply our logarithmic approximation directly. Rather,
we apply the expectation operator after linearisation. Now since the expectations operator is
distributive in the sense that for two random variables X and Y , and a real number, a, we have

E[aX + Y ] = aE[X] + E[Y ]

we can safely solve for our variable of interest. Applying the substitution method, it clearly
follows that

E[x̂yt] ≈ E[x̂t] + E[ŷt]

More generally, for a function f(xt, yt),37 the first order Taylor-approximation around the steady
state (x, y) is given by

f(xt, yt) ≈ f(x, y) +
∂f(xt, yt)

∂xt

∣∣∣∣
(x,y)

(xt − x) +
∂f(xt, yt)

∂yt

∣∣∣∣
(x,y)

(yt − y)

Taking expectations conditional on information at time t− 1 we get

Et−1[f(xt, yt)]− f(x, y) ≈ ∂f(xt, yt)

∂xt

∣∣∣∣
(x,y)

Et−1[xt − x] +
∂f(xt, yt)

∂yt

∣∣∣∣
(x,y)

Et−1[yt − y]

Define zt = f(xt, yt) and we can write

Et−1[ẑt] ≈
∂f(xt, yt)

∂xt

∣∣∣∣
(x,y)

x

z
Et−1[x̂t] +

∂f(xt, yt)

∂yt

∣∣∣∣
(x,y)

y

z
Et−1[ŷt]

7.1.5 General recursive solution

Assume that a times series yt can be written in the following form:

yτ = Eτ

[ ∞∑
t=τ

ωt−τ (xt + zτ,t)

]

Now we define
ς(τ, t) = ωt−τ (xt + zτ,t)

and we can write
ς(τ, t) = ως(τ + 1, t) + ωt−τ (zτ,t − zτ+1,t)

37The more general case of a function of finite number of variables has a natural extension.
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Thus we have

yτ = Eτ

[ ∞∑
t=τ

ωt−τ (xt + zτ,t)

]
(131)

= Eτ

[ ∞∑
t=τ

ς(τ, t)

]
(132)

= xτ + zτ,τ + Eτ

[ ∞∑
t=τ+1

ς(τ, t)

]
(133)

= xτ + zτ,τ + Eτ

[ ∞∑
t=τ+1

ως(τ + 1, t) + ωt−τ (zτ,t − zτ+1,t)

]
(134)

We have that

Eτ

[ ∞∑
t=τ+1

ως(τ + 1, t)

]
= Eτ+1

[ ∞∑
t=τ+1

ως(τ + 1, t)

]
whence we conclude

yτ = xτ + zτ,τ + ωyτ+1 + Eτ

[ ∞∑
t=τ+1

ωt−τ (zτ,t − zτ+1,t)

]
(135)

If we assume that
zt1,t3 = zt1,t2 + zt2,t3 and zt,s = −zs,t

we get that
zτ,t − zτ+1,t = zτ,t + zt,τ+1 = zτ,τ+1

This, in turn, gives us finally

yτ = xτ + ωEτ [yτ+1] +
ω

1− ω
Eτ [zτ,τ+1] (136)

7.2 Household consumption and investment decisions

It is well known that there exists a solution to the household’s decision problem as it is stated in
this handbook (See Stokey et al. (1989)). This is generally proven using the Bellman equation
and Banach’s fixed point theorem. Sufficiency is thus ensured. An extension of the method
of Lagrange multipliers to the case of functions between Banach spaces can be used to find a
necessary condition and a solution to the households’ optimisation problem. We can apply the
methods discussed in Appendix A, section 7.1.1, mutatis mutandis. Using the notation from
the aforementioned section, we set z = (C,N,BH , B

∗
H , I, U,KS), and define f : X7 → R and

g : X7 → RN by:

f(z) = Eτ

[ ∞∑
t=τ

Ut(Ct(j), Ct−1, Nt(j))

]
g(z) = ((ζb(z1, z0), ζc(z2, z1)), . . . , (ζb(zt, zt−1), ζc(zt+1, zt)), . . . )
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where ζb is identified with the budget constraint:

ζb,t =Pt (Ct + It + ΓU (Ut)KS,t) + ξtB
∗
H,t+1 + E [Λt,t+1BH,t+1] + TAt

−
(
R∗t−1(1− ΓB,t−1)ξtB

∗
H,t +BH,t +WtNt +RKt UtKS,t +Dt

)
(137)

and ζc represents the constraint on the law of motion for capital:

ζc,t = KS,t+1 − (1− δ)KS,t + ZI,tIt

(
1− ΓI,t

(
It
It−1

))
where we have suppressed the reference to household j. In Appendix A, section 7.1.1, we argued
that a necessary condition for maximisation can be given in terms of the partial derivatives of f
and g with respect to each variable at each time. We thus get first order conditions

Eτ

[ ∞∑
t=τ

βt−τ
δUt(Ct(j), Ct−1, Nt(j))

δxt
−
∞∑
t=τ

〈
(λb,t, λc,t),

δg(zt)

δxt

〉]
= 0 (138)

where xt is an arbitrary control variable at time t. It is readily verified that we can work in the
usual context of the Lagrange multipliers. For convenience we define the Lagrangian as

L = E

[ ∞∑
t=τ

βt−τUt(Ct(j), Ct−1, Nt(j)) +

∞∑
t=τ

λb,tξb,t(zt) +

∞∑
t=τ

λc,tξc(zt)

]

The first order condition with respect to consumption is

λb,t+i = −βiEt[MUCt+i(j)P
−1
t+i] (139)

It is clear that the budget constraint binds in optimum, i.e. λb,t 6= 0, and we can thus write the
first order condition with respect to domestic bond holdings as

1 = Eτ [Λt,t+1] · λb,t
λb,t+1

(140)

which together imply

1 = Et
[
Λt,t+1 · β−1 MUCt

MUCt+1

Pt+1

Pt

]
(141)

For equation (141) to hold independently of the underlying probability density function we must
have

Λt,t+1 = β
MUCt+1

MUCt

Pt
Pt+1

(142)

Define Rt = Et[Λt,t+1]−1 and we get

1 = RtE[Λt,t+1] (143)

Further, using the first order condition with respect to labour supply, given by
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λb,t+i = βiEt[MUNt+i(j)W
−1
t+i] (144)

in combination with the first order condition with respect to consumption from equation (139),
we get the familiar equation

1 = −Et
[
MUNt
MUCt

Pt
Wt

]
The FOC with respect to foreign bonds gives

1 =
λb,t+1

λb,t
Et
[
ξt+1

ξt
R∗t (1− ΓB,t)

]
(145)

Again using equation (140), we get

1 = R∗t (1− ΓB,t)Et
[
Λt,t+1

ξt+1

ξt

]
(146)

Turning to capital utilisation, the first order condition with respect to Ut gives

RKt
Pt

= Γ′(Ut) (147)

The first order condition w.r.t. KS,t+1 is given by

0 = Et
[
λb,t+1(ΓU,t+1Pt+1 −RKt+1Ut+1)− λc,t+1(1− δ)

]
+ λc,t (148)

and w.r.t. investment

0 =λb,tPt − λc,tZI,t
(

1− ΓI,t (·)− Γ′I,t (·)
(

It
It−1

))
− Et

[
λc,t+1ZI,t+1Γ′I,t+1 (·)

(
It+1

It

)2
]

(149)

We define the real marginal Tobin’s Q as Qt =
λc,t
λb,t

P−1
t .38 Then equation (148) becomes

0 = Et
[
Λt,t+1(ΓU,t+1Pt+1 −RKt+1Ut+1)−Qt+1Pt+1Λt,t+1(1− δ)

]
+QtPt

where we have used that λb,t+1

λb,t
= Et[Λt,t+1]. We can equivalently write

Qt = Et
[
Λt,t+1

Pt+1

Pt

(
RKt+1

Pt+1
Ut+1 − ΓU,t+1 + (1− δ)Qt+1

)]
(150)

In terms of Tobin’s Q, equation (149) can be written as

1 =QtZI,t

(
1− ΓI,t (·)− Γ′I,t (·)

(
It
It−1

))
+ Et

[
Qt+1

Pt+1

Pt
Λt,t+1ZI,t+1Γ′I,t+1 (·)

(
It+1

It

)2
]

(151)

38Tobin’s Q is generally defined as the value of a unit of installed capital in terms of its replacement cost. Thus
at optimum, the marginal Tobin’s Q must be such that a unit increment in the real value of the investment is
equal to the increment in real cost of the investment. We define real marginal Tobin’s Q as the shadow price of
physical capital investment relative to the shadow price of income in consumption units.
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7.3 Factor markets and marginal cost

7.3.1 Labour supply

A generic domestic firm i wants to maximise the labour services employed at time t, for a given
expenditure on labour since their production function is increasing in labour. We have the
Lagrangian

L = n
ρ−1
ρ

(∫
Nρ
t (i, l)dl

) 1
ρ

− ν
(∫

Wt(l)Nt(i, l)dl −ΘN,t

)
where the integral is evaluated on the interval [0, n], 0 ≤ n ≤ 1. Henceforth we drop inessential
indices for the sake of readability.39 The first order condition with respect to N(i, j) is given
by40

n
ρ−1
ρ

(∫
Nρ(i, l)dl

) 1−ρ
ρ

Nρ−1(i, j)− νW (j) = 0

which we can rewrite as
νW (j) = n−

(1−ρ)2
ρ N1−ρ(i) ·Nρ−1(i, j)

using the assumption

N(i) = n
ρ−1
ρ

(∫
Nρ(i, l)dl

) 1
ρ

Since N(i) is monotonic w.r.t. N(i, j) for N(i, j) > 0, it is clear that the constraint is binding
and ν 6= 0. Thus for any two households j and k, we have(

W (k)

W (j)

) 1
ρ−1

=
N(i, k)

N(i, j)

Recall that we define the elasticity of substitution as ε = εW,t = 1
1−ρ . By multiplying with

appropriate terms and integrating, we get

ΘN =

∫ n

0

N(i, l)W (l)dl =

∫ n

0

W 1−ε(l)dl · N(i, j)

W (j)−ε
(152)

Using the definition of the wage index, given by equation (6), then equation (152) becomes

N(i, j) =
1

n

ΘN

W

(
W (j)

WH

)−ε
(153)

Inserting the last expression into the definition of aggregate labour service supplied to firm i,
Nt(i), we get

N(i) = n
1

1−ε

∫ n

0

[
1

n

ΘN

W

(
W (l)

W

)−ε] ε−1
ε

dl


ε
ε−1

which we can rewrite as

N(i) = n
1

1−ε−1 ΘN

W 1−ε ·
(∫ n

0

W 1−εH (l)dl

) ε
ε−1

39We also drop the time index since all decision on labour supply are contemporaneous.
40Here we employ our results from Appendix A, section 7.1.2.
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which, in turn implies

N(i) = n
1

1−ε−1 ΘN

W 1−ε ·
(
n

ε
ε−1W−ε

)
=

ΘN

W

or equivalently ∫
W (k)N(i, l)dl = ΘN = N(i)W (154)

Bringing back the notation for the i-th firm employing household j at time t, and inserting the
last expression into equation (153), we get

Nt(i, j) =
1

n

(
Wt

Wt(j)

)−εW,t
Nt(i) (155)

Aggregating over firms gives

Nt(j) =

(
Wt

Wt(j)

)−εW,t
Nt (156)

7.3.2 Marginal cost

Let us now turn to deriving the stated expression for a generic domestic firm’s marginal cost.
First, to get the conditional factor demand we minimise

L = κg,t(i)− λ(Yg,t(i)−ΘS,t)

where
κg,t(i) =

∫
Wt(l)Ng,t(i, l)dl +RKt Kg,t(i) = WtNg,t(i) +RKt Kg,t(i)

is the the firm’s cost function and

Yg,t(i) = KψH
g,t (i)(ZtZH,tNS,t(i))

1−ψH

is the firm’s i production function. Again we simplify notation by dropping indices. The first
order conditions w.r.t. N(i) and K(i) are given by41

W = λ(1− ψH)

(
K(i)

N(i)

)ψH
(ZZH)1−ψH

and

RK = λψH

(
K(i)

N(i)

)ψH−1

(ZZH)1−ψH

which together imply
K(i)

N(i)
=

ψH
1− ψH

W

RK
(157)

or
K(i) =

ψH
1− ψH

W

RK
N(i)

41It is inconsequential that we do not differentiate betweenNS,t(i) andNt(i) in the derivation since ∂NS,t(i)
∂Nt(i)

= 1.
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Now we can derive our desired marginal cost function. Inserting the last equation into the cost
function κ(i), we get

κ(i) = N(i)W
1

1− ψH
Marginal cost is defined as

MC(i) =
dκ(i)

dY (i)
=

W

1− ψH
dN(i)

dY (i)
(158)

and it thus suffices to find the amount of labour needed to produce an extra unit. Inserting the
conditional factor demand constraint in equation (157) into the production function, we get

Y (i) = N(i)

(
ψH

1− ψH

)ψH ( W

RK

)ψH
(ZZH)1−ψH

Rearranging and differentiating N(i) with respect to Y (i) gives:

dN(i)

dY (i)
=

(
ψH

1− ψH

)−ψH ( W

RK

)−ψH 1

(ZZH)1−ψH

Bringing back the full notation this implies

MCt(i) =
1

1− ψH
Wt

(
ψH

1− ψH

)−ψH (Wt

RKt

)−ψH 1

(ZtZH,t)1−ψH
(159)

As established in previous sections all firms pay the same wage and the same rental rate of
capital, thus it is clear that all firm have the same marginal cost, i.e., for all i we have

MCt = MCt(i) =
1

1− ψH

(
ψH

1− ψH

)−ψH W 1−ψH
t (RKt )ψH

(ZtZH,t)1−ψH
(160)

7.4 Demand schedules

7.4.1 Domestic demand schedules

In deriving a domestic household’s demand schedule as a function of total demand, we proceed in
two steps. First, we maximise domestic and foreign consumption, separately, given expenditures
on each. Subsequently, we minimise expenditures on total consumption, i.e. the sum of domestic
and foreign consumption, given the total consumption level. It is clear that these are necessary
conditions for a rational agent since utility is an increasing function of consumption. For the
first step, we define the Lagrangian

L = Cl,t(j)− ν
(∫

Pl,t(k)Cl,t(k, j)dk −ΘCl

)
(161)

= n
ρ−1
ρ

l

(∫
Cρl,t(k, j)dk

) 1
ρ

− ν
(∫

Pl,t(k)Cl,t(k, j)dk −ΘCl

)
(162)

where l ∈ {H,F}, nl = n when l = H, and nl = 1− n when l = F , and the integral is evaluated
over the corresponding interval. Now we will drop all dispensable indices for legibility, which
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implicitly shows that the derivation for the foreign and domestic consumption is identical. The
first order condition with respect to C(i) is given by42

n
ρ−1
ρ

l

(∫
Cρ(i)di

) 1−ρ
ρ

Cρ−1(i)− νP (i) = 0

The constraint is clearly binding, implying ν 6= 0. Similarly as for labour demand we have for
any two goods i and k: (

P (k)

P (i)

) 1
ρ−1

=
C(k)

C(i)

The elasticity of substitution is given by ε = 1
1−ρ . Cross-multiplying by the appropriate terms

and integrating, we get

ΘCl =

∫ b

a

C(k)P (k)dk =

∫ b

a

P 1−ε(k)dk · C(i)

P (i)−ε
(163)

where a, b are determined by whether we are considering domestic or foreign markets. In the
domestic market case we have a = 0, b = n, while we have a = n, b = 1, in the foreign case.
Bringing back the notation for the j-th household consuming good i, and using the definition of
the consumption price index, given by equations (10) and (11), then equation (163) becomes

Cl,t(i, j) =
1

nl

ΘCl

Pl,t

(
Pl,t(i)

Pl,t

)−ε
(164)

Inserting the last expression into the definition of aggregate consumption of household j, Cl,t(j),
we get

Cl,t(j) = n
1

1−ε
l

∫ b

a

[
1

nl

ΘCl

Pl,t

(
Pl,t(k)

Pl,t

)−ε] ε−1
ε

dk


ε
ε−1

which we can rewrite as

Cl,t(j) = n
1

1−ε−1

l

ΘCl

P 1−ε
l,t

·

(∫ b

a

P
1−εl,t
l,t (k)dk

) ε
ε−1

which, in turn implies

Cl,t(j) = n
1

1−ε−1

l

ΘCl

P 1−ε
l,t

·
(
n

ε
ε−1

l P−εl,t

)
=

ΘCl

Pl,t

or equivalently
ΘCl = Cl,t(j)Pl,t

By inserting the last expression into equation (164) we get

Cl,t(i, j) =
1

nl

Cl,t(j)Pl,t
Pl,t

(
Pl,t(i)

Pl,t

)−εl,t
which implies

Cl,t(i, j) =
1

nl

(
Pl,t(i)

Pl,t

)−εl,t
Cl,t(j) (165)

42Here we use our results on functional derivatives from Appendix A, section 7.1.2.
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representing domestic household j’s demand schedule for a domestic good i in terms of relative
prices and household j’s aggregate demand schedule.

Next, we minimise total expenditure for a given level of total consumption, with respect to
consumption of domestic goods and imports. We have the corresponding Lagrangian:

L =

∫
PH,t(k)CH,t(k, j)dk +

∫
PF,t(k)CF,t(k, j)dk

− λ

([
ᾱ

1
ηC

η−1
η

H,t (j) + (1− ᾱ)
1
ηC

η−1
η

F,t (j)

] η
η−1

−ΘC

)

Above we demonstrated that∫
Pl,t(k)Cl,t(k, j)dk = ΘCl = Cl,t(j)Pl,t

and we can thus write the Lagrangian as

L = PH,tCH,t(j) + PF,tCF,t(j)− λ

([
ᾱ

1
ηC

η−1
η

H,t (j) + (1− ᾱ)
1
ηC

η−1
η

F,t (j)

] η
η−1

−ΘC

)

First order conditions are given by

PH,t = λᾱ
1
η

(
Ct(j)

CH,t(j)

) 1
η

PF,t = λ(1− ᾱ)
1
η

(
Ct(j)

CF,t(j)

) 1
η

which we will find useful to rewrite as

CH,t(j) = ληᾱP−ηH,tCt(j) (166)

CF,t(j) = λη(1− ᾱ)P−ηF,tCt(j) (167)

Together, equations (166) and (167) imply

CH,t(j)

CF,t(j)
=

ᾱ

1− ᾱ

(
PH,t
PF,t

)−η

λ = ᾱ−
1
ηPH

(
Ct(j)

CH,t(j)

)− 1
η

We will use the last two equations to show that λ = Pt, a result we anticipate given the in-
terpretation of the Lagrangian multiplier as the shadow cost of increasing total consumption.
Multiplying the latter by Ct(j), and using the former to express CH,t(j) in terms of CF,t(j), we
get
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λ · Ct = PH,tᾱ
−1
η C

1
η

H,tC
η−1
η

t

= PH,tᾱ
−1
η C

1
η

H,t

[
ᾱ

1
ηC

η−1
η

H,t + (1− ᾱ)
1
ηC

η−1
η

F,t

]

= PH,tCH + PH ᾱ
−1
η

(
CF,t

ᾱ

1− ᾱ

(
PH,t
PF,t

)−η) 1
η

(1− ᾱ)
1
ηC

η−1
η

F,t

= PH,tCH,t + PF,tCF,t

(168)

where we have suppressed the reference to the j-th household. Bringing back the full notation,
we can write

λ · Ct(j) = PH,tCH,t(j) + PF,tCF,t(j)

Multiplying both sides by 1
n and integrating over the domestic economy we see that Pt = λ.

Now, using the envelope theorem, we have that

λ = PH,t
δCH,t(j)

δΘC
+ PF,t

δCF,t(j)

δΘC

At the optimum we have ΘC = Ct(j), hence we have by equations (166) and (167):

δCH,t(j)

δΘC
= ληᾱP−ηH,t

and

δCF,t(j)

δΘC
= λη(1− ᾱ)P−ηF,t

Inserting these into the expression just derived for λ, we get

Pt = λ =
[
ᾱ

1
ηP 1−η

H,t + (1− ᾱ)P 1−η
F,t

] 1
1−η

as foretold by the main text. Equations (166) and (167) become

CH,t(j) = ᾱ

(
PH,t
Pt

)−η
Ct(j)

CF,t(j) = (1− ᾱ)

(
PF,t
Pt

)−η
Ct(j)

Inserting the former into equation (165), we get

CH,t(i, j) =
1

n

(
PH,t
PH,t(i)

)−εH,t
ᾱ

(
PH,t
Pt

)−η
Ct(j)
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Aggregating over domestic households j ∈ [0, n] gives us the domestic consumption demand for
good i as

CH,t(i) =

∫ n

0

CH,t(i, j)dj

= ᾱ

(
PH,t(i)

PH,t

)−εH,t (PH,t
Pt

)−η (
1

n

)∫ n

0

Ct(j)dj

= ᾱ

(
PH,t(i)

PH,t

)−εH,t (PH,t
Pt

)−η
Ct

Using Ct =
(

1
n

) ∫ n
0
Ct(j)dj, the total consumption per capita.

Similarly, we get the domestic demand for a foreign producer i’s good:

CF,t(i) = (1− ᾱ)

(
PF,t(i)

PF,t

)−εF,t (PF,t
Pt

)−η
n

1− n
Ct

7.4.2 Foreign demand schedules

We need not trouble ourselves with the foreign consumption of foreign goods but we will derive
the demand for domestic exports. The case of exports differs from the domestic demand schedules
since we assume the existence of an export adjustment cost and specialised export firms. We
define the export adjustment cost as

Γ∗H,t =
θ∗M
2

(
C∗H,t
C∗t

C∗t−1

C∗H,t−1

− 1

)2

which enters the foreign consumption basket through

C∗t (j) =
[
(ᾱ∗)

1
η Č∗H,t(j)

η−1
η + (1− ᾱ∗)

1
ηC∗F,t(j)

η−1
η

] η
η−1

(169)

where
Č∗H,t(j) = [1− Γ∗H,t]C

∗
H,t(j) (170)

and

C∗H,t(j) =

[
(1− αE)

1
ηE C∗g,t(j)

ηE−1

ηE + α
1
ηE

E C∗E,t(j)
ηE−1

ηE

] ηE
ηE−1

(171)

Export adjustment cost is included to reflect the marketing cost of entering a new market, the
cost of expanding a geographical network, etc. Employing the methods in the preceding section
we can easily get the expression:

C∗g,t(i, j) =

(
1

n

)(
P ∗g,t(i)

P ∗g,t

)−εH,t
C∗g,t(j) (172)

Since we assume that P ∗E,t(i) = P ∗g,t, we clearly have
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C∗E,t(i, j) =

(
1

n

)
C∗E,t(j) (173)

Before we derive demand of domestic and foreign goods as a function of total demand we seek
to express the choice between the generic export goods and specialised export goods. To that
end we minimise expenditure on each good, given foreign consumption level for domestic goods.

We thus minimise the Lagrangian43

L = P ∗H,t(C
∗
g,t(j) + C∗E,t(j))

− λ∗H,t

([
α

1
ηE

E (C∗E,t(j))
ηE−1

ηE + (1− αE)
1
ηE (C∗g,t(j))

ηE−1

ηE

] ηE
ηE−1

− φ∗H

)

where we use P ∗H,t = P ∗g,t = P ∗E,t. Omitting inessential notation, the first order conditions can
be written as

λ∗H,t = P ∗H,tα
− 1
ηE

E

(
C∗H,t
C∗E,t

)− 1
ηE

λ∗H,t = P ∗H,t(1− αE)
− 1
ηE

(
C∗H,t
C∗g,t

)− 1
ηE

C∗H,t = φ∗H

Note that together these equations imply

αE
1− αE

=
C∗E,t
C∗g,t

(174)

Furthermore, we have

λ∗H,tC
∗
H,t = P ∗H,tα

− 1
ηE

E

(
C∗E,t
C∗H,t

) 1
ηE

C∗H,t

= P ∗H,tα
− 1
ηE

E (C∗E,t)
1
ηE (C∗H,t)

ηE−1

ηE

= P ∗H,tα
− 1
ηE

E (C∗E,t)
1
ηE

[
α

1
ηE

E (C∗E,t(j))
ηE−1

ηE + (1− αE)
1
ηE (C∗g,t)

ηE−1

ηE

]
= P ∗H,tC

∗
E,t + P ∗H,tα

− 1
ηE

E (C∗g,t)
1
ηE

(
αE

1− αE

) 1
αE

(1− αE)
1
ηE (C∗g,t)

ηE−1

ηE

= P ∗H,tC
∗
E,t + P ∗H,tC

∗
g,t

Using the envelope theorem and similar arguments as in the preceding section we deduce that
λ∗H,t = P ∗H,t and we get, unsurprisingly:

43Again relying on the methods of functional derivatives outlined in Appendix A, section 7.1.2.
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C∗E,t(j) = αEC
∗
H,t(j) (175)

C∗g,t(j) = (1− αE)C∗H,t(j) (176)

C∗H,t(j) = CE,t(j) + Cg,t(j) (177)

Combining this result with equation (172) and (173) We can write

C∗g,t(i, j) = (1− αE)

(
1

1− n

)(
P ∗H,t(i)

P ∗H,t

)−εH,t
C∗H,t(j) (178)

C∗E,t(i, j) = αE

(
1

n

)
C∗H,t(j) (179)

Finally we want to express the demand schedules in terms of total demand. We thus minimise
the Lagrangian

L = P ∗H,tC
∗
H,t(j) + P ∗F,tC

∗
F,t(j)

− λ∗t

([
(ᾱ∗)

1
η∗ (Č∗H,t(j))

η∗−1
η∗ + (1− ᾱ∗)

1
η∗ (C∗F,t)

η∗−1
η∗
] η∗
η∗−1

− φ∗
)

And the first order conditions are

0 = P ∗H,t − λ∗t
∂C∗t (j)

∂C∗H,t(j)
(180)

0 = P ∗F,t − λ∗t
∂C∗t (j)

∂C∗F,t(j)
(181)

By the chain rule we have
∂C∗t (j)

∂C∗H,t(j)
=

∂C∗t (j)

∂Č∗H,t(j)

∂Č∗H,t(j)

∂C∗H,t(j)

and by definition
∂Č∗H,t(j)

∂C∗H,t(j)
= [1− Γ∗H,t]−

∂Γ∗H,t
∂C∗H,t(j)

C∗H,t(j)

Thus

∂C∗t (j)

∂C∗H,t(j)
= (ᾱ∗)

1
η∗

(
C∗t (j)

Č∗H,t(j)

) 1
η∗ ∂Č∗H,t(j)

∂C∗H,t(j)

= (ᾱ∗)
1
η∗

(
C∗t (j)

C∗H,t(j)[1− Γ∗H,t]

) 1
η∗ ∂Č∗H,t(j)

∂C∗H,t(j)

= (ᾱ∗)
1
η∗

(
C∗t (j)

C∗H,t(j)

) 1
η∗

Γ̌H,t
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where we have defined

Γ̌∗H,t =
1− Γ∗H,t −

∂Γ∗H,t
∂CH,t(j)

C∗H,t(j)

(1− Γ∗H,t)
1
η∗

With respect to foreign demand of foreign goods we have

∂C∗t (j)

∂C∗F,t(j)
= (1− ᾱ∗)

1
η∗

(
C∗t (j)

C∗F,t(j)

) 1
η∗

We can rewrite these conditions as

λ∗t = (1− ᾱ)−
1
η∗ P ∗F,t

(
C∗t (j)

C∗F,t(j)

)− 1
η∗

= (ᾱ)−
1
η∗ P ∗H,t

(
C∗t (j)

C∗H,t(j)

)− 1
η∗

(Γ̌∗H,t)
−1 (182)

and

(C∗F,t(j))
1
η∗ =

(
ᾱ

1− ᾱ

)− 1
η∗ P ∗H,t

P ∗F,t
(C∗H,t(j))

1
η∗ (Γ̌∗H,t)

−1 (183)

Using the three preceding equations we follow the same procedure as before and seek to express
λ∗t in terms of prices. We have

λ∗t · C∗t (j) = (1− ᾱ)−
1
η∗ P ∗F,t(C

∗
F,t(j))

1
η∗ (C∗t (j))

η∗−1
η∗

= (1− ᾱ)−
1
η∗ P ∗F,t(C

∗
F,t(j))

1
η∗

[
ᾱ

1
η∗ ČH,t(j)

η∗−1
η∗ + (1− ᾱ)

1
η∗ C

η∗−1
η∗

F,t (j)

]
= (1− ᾱ)−

1
η∗ P ∗F,t(C

∗
F,t(j))

1
η∗ ᾱ

1
η∗ ČH,t(j)

η∗−1
η∗

+ (1− ᾱ)−
1
η∗ P ∗F,t(C

∗
F,t(j))

1
η∗ (1− ᾱ)

1
η∗ CF,t(j)

η∗−1
η∗

= (1− ᾱ)−
1
η∗ P ∗F,t

(
ᾱ

1− ᾱ

)− 1
η∗ P ∗H,t

P ∗F,t
(C∗H,t(j))

1
η∗ (Γ̌∗H,t)

−1ᾱ
1
η∗ ČH,t(j)

η∗−1
η∗

+ (1− ᾱ)−
1
η∗ P ∗F,t(C

∗
F,t(j))

1
η∗ (1− ᾱ)

1
η∗ CF,t(j)

η∗−1
η∗

= P ∗H,tC
∗
H,t(j)(̌Γ̌

∗
H,t)

−1[1− Γ∗H,t]
η∗−1
η∗ + P ∗F,tC

∗
F,t(j)

Alternatively we can write

(Γ̌∗H,t)
−1[1− Γ∗H,t]

η∗−1
η∗ =

1− Γ∗H,t −
∂Γ∗H,t

∂CH,t(j)
C∗H,t

(1− Γ∗H,t)
1
η∗

−1

[1− Γ∗H,t]
η∗−1
η∗

=
1− Γ∗H,t

1− Γ∗H,t −
∂Γ∗H,t

∂CH,t(j)
C∗H,t

= Γ̂∗H,t

which gives

λ∗t · C∗t (j) = P ∗H,tC
∗
H,t(j)Γ̂

∗
H,t + P ∗F,tC

∗
F,t(j) (184)

= P ∗H,t

(
∂Č∗H,t
∂C∗H,t

)−1

Č∗H,t + P ∗F,tC
∗
F,t (185)

= P̌ ∗H,tČ
∗
H,t + P ∗F,tC

∗
F,t (186)
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If we define

P̌ ∗H,t = P ∗H,t

(
∂Č∗H,t
∂C∗H,t

)−1

Transforming both sides to economy wide per capita terms, we get λ∗t = P ∗t by definition. We
can also represent P ∗t in terms of P ∗F,t and P

∗
H,t. To that end we use the envelope theorem yet

again and get

λ∗t = P ∗H,t
∂C∗H,t(j)Γ̂

∗
H,t

∂C∗t (j)
+ P ∗F,t

∂C∗F,t(j)

∂C∗t (j)
(187)

From the first order conditions we see that

∂C∗F,t(j)

∂C∗t
= (λ∗t )

η∗(1− ᾱ)(P ∗F,t)
−η∗

For exports we have

C∗H,t(j)Γ̂
∗
H,t =

(
λ∗t
P ∗H,t

)η∗
α∗C∗t (j)

(
∂Č∗H,t(j)

∂C∗H,t(j)

)η∗−1

and thus
∂(C∗H,t(j)Γ̂

∗
H,t)

∂C∗t (j)
=

(
λ∗t
P ∗H,t

)η∗
α∗

∂

∂C∗t (j)

C∗t (j)

(
∂Č∗H,t(j)

∂C∗H,t(j)

)η∗−1


from which we get

λ∗t = P ∗H,t

(
λ∗t
P ∗H,t

)η∗
α∗

∂

∂C∗t (j)

C∗t (j)

(
∂Č∗H,t(j)

∂C∗H,t(j)

)η∗−1


+ P ∗F,t

(
λ∗t
P ∗F,t

)η∗
(1− α∗)

Denote

gt(·) =
∂

∂C∗t (j)

C∗t (j)

(
∂Č∗H,t(j)

∂C∗H,t(j)

)η∗−1


and we get
P ∗t = λ∗t =

[
ᾱ∗(P ∗H,t)

1−ηgt(·) + (1− ᾱ∗)(P ∗F,t)1−η] 1
1−η (188)

Using P ∗t = λ∗t with the first order conditions, we get

C∗H,t(j) = ᾱ∗
(
P ∗H,t
P ∗t

)−η
(Γ̌∗H,t(j))

η · C∗t (j) (189)

and thus, using equation (178) and (179), we have

C∗g,t(i, j) = (1− αE)ᾱ∗

(
P ∗H,t(i)

P ∗H,t

)−εH,t (
P ∗H,t
P ∗t

)−η
(Γ̌∗H,t(j))

η ·
(

1

n

)
C∗t (j) (190)
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and

C∗E,t(i, j) = αEᾱ
∗
(
P ∗H,t
P ∗t

)−η
(Γ̌∗H,t(j))

η ·
(

1

n

)
C∗t (j) (191)

And further, integrating with respect to j, over the appropriate interval, we get

C∗g,t(i) = (1− αE)

(
1− n
n

)
ᾱ∗

(
P ∗H,t(i)

P ∗H,t

)−εH,t (
P ∗H,t
P ∗t

)−η
Ĉ∗t (192)

C∗E,t(i) = αE

(
1− n
n

)
ᾱ∗
(
P ∗H,t
P ∗t

)−η
Ĉ∗t (193)

where Ĉ∗t = 1
1−n

∫ 1

n
(Γ̌∗H,t(j))

η · C∗t (j) dj.

7.5 Market equilibrium

Since the final good can be transformed one-to-one into any type of good, i.e. investment, con-
sumption, or public consumption good, it follows that the elasticity of substitution between goods
of any type are the same regardless of the use of the final good. Moreover, the export adjustment
cost is independent of the final use of the final good since it only depends on relative quantities,
which in turn depend on the elasticities of substitution and relative prices. Consequently, we
may derive demand relations for the good produced by any firm i, corresponding to the private
consumption demand relations above for public consumption, investment and maintenance of
machinery. Lastly, the equilibrium of the model is symmetric, i.e. every generic firm chooses
the same price given the chance and each domestic agent chooses the same consumption basket.
This follows from our earlier discussion on the implication of the complete markets assumption
and the fact that every generic firm has the same marginal cost.

7.5.1 Market clearing of domestic goods

Demand for the two types of goods sold home and abroad are described by the three equations:

XH,t(i) = ᾱ

(
PH,t(i)

PH,t

)−εH,t (PH,t
Pt

)−η
Xt

X∗g,t(i) = ᾱ∗(1− αE)

(
1− n
n

)(
P ∗H,t(i)

P ∗H,t

)−ε∗H,t (
P ∗H,t
P ∗t

)−η

×
(

1

1− n

)∫ 1

n

(
1− Γ∗H,t −X∗H,t(j)

∂Γ∗H,t
∂X∗H,t(j)

)η
1− Γ∗H,t

X∗t (j)dj
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X∗E,t(i) = ᾱ∗αE

(
1− n
n

)(
P ∗H,t(i)

P ∗H,t

)−ε∗H,t

×
(

1

1− n

)∫ 1

n

(
1− Γ∗H,t −X∗H,t(j)

∂Γ∗H,t
∂X∗H,t(j)

)η
1− Γ∗H,t

X∗t (j)dj

where X ∈ {C, I,G,M}. In equilibrium all agents choose the same action and we can suppose
that

(
1

1− n

)∫ 1

n

(
1− Γ∗H,t −X∗H,t(j)

∂Γ∗H,t
∂X∗H,t

)η
1− Γ∗H,t(j)

X∗t (j)dj =

(
1− Γ∗H,t −X∗H,t

∂Γ∗H,t
∂X∗H,t

)η
1− Γ∗H,t

X∗t

and we get

AH,t(i) = ᾱ

(
PH,t(i)

PH,t

)−εH,t (PH,t
Pt

)−η
At

A∗g,t(i) = ᾱ∗(1− αE)

(
1− n
n

)(
P ∗H,t(i)

P ∗H,t

)−ε∗H,t (
P ∗H,t
P ∗t

)−η (1− Γ∗H,t −A∗H,t
∂Γ∗H,t
∂A∗H,t

)η
1− Γ∗H,t

A∗t

A∗E,t(i) = ᾱ∗αE

(
1− n
n

)(
P ∗H,t
P ∗t

)−η (1− Γ∗H,t −A∗H,t
∂Γ∗H,t
∂A∗H,t

)η
1− Γ∗H,t

A∗t

where

AH,t(i) = CH,t(i) + IH,t(i) +MH,t(i) +GH,t(i)

A∗H,t(i) = A∗g,t(i) +A∗E,t

A∗l,t(i) = C∗l,t(i) + I∗l,t(i) +M∗l,t(i) +G∗l,t(i)

with l ∈ {g,E}. Recall that we have defined

At = Ct + It +Gt +Mt and A∗t = C∗t + I∗t +G∗t +M∗t

Note that A∗E,t(i) is independent of i, and we can safely write A∗E,t. Aggregate supply is defined
as

Y hH,t =

(
1

n

∫ n

0

Y

εH,t−1

εH,t

H,t (i)di

) εH,t
εH,t−1

Y fg,t =

(
1

n

∫ n

0

(Y ∗g,t(i))

ε∗H,t−1

ε∗
H,t di

) ε∗H,t
ε∗
H,t
−1

Y fE,t =
1

n

∫ n

0

Y ∗E,t(i)di
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Before we equate supply and demand for good i by setting AH,t(i) = YH,t(i), Ag,t(i) = Y ∗g,t(i),
AE,t(i) = Y ∗E,t(i), and derive aggregate demand in equilibrium, recall that by definition we have

P
1−εH,t
H,t =

1

n

∫ n

0

P
1−εH,t
H,t (i)di and (P ∗H,t)

1−ε∗H,t =
1

n

∫ n

0

(P ∗H,t(i))
1−ε∗H,t(i)di

and we can thus write (
1

n

∫ n

0

(P
−εH,t
H,t (i))

εH,t−1

εH,t di

) εH,t
εH,t−1

= P
−εH,t
H,t (194)

(
1

n

∫ n

0

((P ∗H,t(i))
−ε∗H,t)

ε∗H,t−1

ε∗
H,t di

) ε∗H,t
ε∗
H,t
−1

= (P ∗H,t)
−ε∗H,t (195)

(196)

Further recall that we define 1− ᾱ = (1− n)α and ᾱ∗ = nα∗ and hence

lim
n→0

1− n
n

ᾱ∗ = α∗, lim
n→0

ᾱ = 1− α (197)

Thus aggregate domestic demand for domestic goods can be written as

Y hH,t = (1− α)

(
PH,t
Pt

)−η
At (198)

Aggregate foreign demand for a generic export good can be written

Y fg,t = α∗(1− αE)

(
P ∗H,t
P ∗t

)−η (1− Γ∗H,t −A∗H,t
∂Γ∗H,t
∂A∗H,t

)η
1− Γ∗H,t

A∗t (199)

The aggregate foreign demand for the specialised export good can be greater than feasible supply
and thus market equilibrium is the minimum of the aggregate demand and the upper limit of
the aggregate supply:

Y fE,t = min
(
A∗E,t,max(YE,t)

)
(200)

where

A∗E,t = α∗αE

(
P ∗H,t
P ∗t

)−η (1− Γ∗H,t −A∗H,t
∂Γ∗H,t
∂A∗H,t

)η
1− Γ∗H,t

A∗t

= Y fg,t
αE

1− αE

The aggregate demand for domestic goods in equilibrium is then defined as

YH,t = Y hH,t + EXt (201)

where
EXt = Y fg,t + Y fE,t
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7.5.2 Market clearing of foreign goods

By exactly the same methods as above we get from the demand schedule for foreign goods

AF,t(i) = (1− ᾱ)

(
n

1− n

)(
PF,t(i)

PF,t

)−εF,t (PF,t
Pt

)−η
At

= nα

(
PF,t(i)

PF,t

)−εF,t (PF.t
Pt

)−η
At

In equilibrium we have Y hF,t(i) = AF,t(i) thus for imports we get

IMt =
1

n

((
1

1− n

) 1
εF,t

∫ 1

n

AF,t(i)
εF,t−1

εF,t di

) εF,t
εF,t−1

=
1

n

(
nα

(
PF,t
Pt

)−η
P
εF,t
F,t At

)((
1

1− n

) 1
εF,t

∫ 1

n

PF,t(i)
1−εF,tdi

) εF,t
εF,t−1

= α

(
PF,t
Pt

)−η
P
εF,t
F,t At

(
1

1− n

)−1

P
−εF,t
F,t

= α

(
PF,t
Pt

)−η
At(1− n)

where we used

PF,t =

[(
1

1− n

)∫ 1

n

PF,t(i)
1−εF,tdi

] 1
1−εF,t

Now letting n→ 0 we finally get

IMt = α

(
PF,t
Pt

)−η
At (202)

Note that aggregate demand for the foreign economy in equilibrium is given by

YF,t(i) = A∗F,t(i) +AF,t(i)

and that clearly
lim
n→0

AF,t(i) = 0

The demand of a small open economy is thus negligible to the rest of the world, as expected.

7.6 Prices

We will only focus on the derivation for domestic prices. The case of foreign prices is treated
identically. A domestic firm i maximises the present value of net profits. From the process
defined in equation (31) we get the following maximisation problem:
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max
P,P∗

Eτ

[ ∞∑
t=τ

θt−τH ∆t,τ

(
Gt|τ (i)− C(Y dH,t|τ ) +

(1− θH)

θH
Vt+1|τ (·)

)]

where Gt|τ (i) are firm’s i gross profits at time t, given by

Gt|τ (i) = AH,t|τ (i)

(
PH,t−1|τ

PH,τ−1

)γh
P + ξtA

∗
H,t|τ (i)

(
P ∗H,t−1|τ

PH,τ−1

)γ∗h
P∗

and C(·) is the cost function and Vt+1(·) is the valuation function in the case where the firm gets
to optimise the price at time t+ 1. The index t | τ indicates that values at time t are conditional
on that the last price reset was at time τ . We interpret PH,t|τ

PH,τ−1
= 1 for t = τ . The price choice at

time τ for domestically sold goods is P and P∗ for goods sold abroad. Now, since the valuation
function Vt+1|τ (·) is independent of P and P∗, we have

∂Vt+1|τ (·)
∂X

= 0

for X ∈ {P,P∗}. Without loss of generality we assume τ = 0. We will often suppress the
conditionality on the last reset time for clarity. The first order condition for our maximisation
problem with respect to P thus becomes

0 = E0

[ ∞∑
t=0

θt∆t,0

(
∂AH,t(i)

∂P

(
PH,t−1

PH,−1

)γh
P +AH,t(i)

(
PH,t−1

PH,−1

)γh)]

− E0

[ ∞∑
t=0

θt∆t,0MCH,t
∂Y dH,t
∂P

]

By assuming that investment, maintenance and government consumption are dictated by the
Dixit-Stiglitz framework, are priced in terms of consumption goods, and have the same elasticity
of substitution, we can write:

AH,t(i) = ᾱ

(
PH,t(i)

PH,t

)−εH,t (PH,t
Pt

)−η
AH,t

Since the last reset time of prices was at period 0, and taking into account the evolution of prices,
we can write

AH,t(i) = ᾱP
εH,tγh
0 P−εH,t

(
PH,t
Pt

)−η
AH,t

It is easy to see that we have
∂AH,t(i)

∂P
P
−εH,t

= AH,t(i)

Further, we have from equation (42) that

∂Y dH,t
∂P

=
∂AH,t(i)

∂P
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Inserting the last two equations into the first order condition, we get

0 = E0

[ ∞∑
t=0

θt∆t,0AH,t

(
(1− εH,t)

(
PH,t−1

PH,−1

)γh
+ εH,tP−1MCt

)]
or equivalently with full notation

0 = Eτ

[ ∞∑
t=τ

θt−τ∆t|τ,τAH,t|τ (1− εH,t)
(
P
(
PH,t−1|τ

PH,τ−1

)γh
−MH,tMCt|τ

)]

whereMH,t =
εH,t
εH,t−1 .

Now we turn to deriving the law of motion for the price index. Using the law of the unconscious
statistician, and the fact that marginal costs are the same for all firms, which implies that all
firms optimise at the same price, we get:

E[P
1−εH,t+1

H,t+1 (i)|Ǐt+1] = θH

((
PH,t
PH,t−1

)γH
PH,t(i)

)1−εH,t+1

+ (1− θH)P1−εH,t+1

H,t+1 (i)

where the information set, Ǐt+1, includes everything known at time t + 1 less the draw of firms
allowed to optimise their prices. Since marginal cost of each firm is identical, the price choice
is identical. Thus, we can write PH,t+1(i) = PH,t+1. It is clear that which firms are chosen to
re-optimise their prices is irrelevant in the aggregate, i.e. P 1−εH,t+1

H,t+1 = E[P
1−εH,t+1

H,t+1 |Ǐt+1]. From
the definition of price aggregation, given by equation (10), we can write

PH,t+1 =

(
1

n

∫ n

0

Et[P
1−εH,t+1

H,t+1 (i)]di

) 1
1−εH,t+1

which yields

P
1−εH,t+1

H,t+1 =
1

n

∫ n

0

[
θH

((
PH,t
PH,t−1

)γH
PH,t(i)

)1−εH,t+1

+ (1− θH)P1−εH,t+1

H,t+1

]
di

The integral of the latter factor is clearly just n(1− θH)P1−εH,t+1

H,t+1 . The former can be written as

θH

(
PH,t
PH,t−1

)γH(1−εH,t+1) ∫ n

0

P
1−εH,t+1

H,t (i)di

By the definition of the price index, we have that

nP
1−εH,t
H,t =

∫ n

0

P
1−εH,t
H,t (i)di

which implies that

P
1−εH,t
H,t+1 = θH

((
PH,t
PH,t−1

)γH
PH,t

)1−εH,t
+ (1− θH)P1−εH,t

H,t+1 (203)

This is the law of motion for domestic prices. The foreign case is handled identically.
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7.7 Wages

Recall that the evolution of wages is given by

Wt+1(j) =

{
Wt+1(j) with probability (1− θW )(

Pt
Pt−1

)γW Zt+1

Zt
Wt(j) with probability θW

and that the wages chosen by a household at time τ is denoted Wτ (j). By symmetry we can
safely omit the reference to the household, and we simply write Wτ . The maximisation problem
takes the form

max
W

Eτ

[ ∞∑
t=τ

θt−τW βt−τUt(Ct|τ (j), Ct−1|τ , Nt|τ (j))

]
(204)

such that

Nt|τ (j) =

(
Wt|τ (j)

Wt

)−εW,t
Nt

presuming that the budget constraint holds with equality for all t. The conditional labour supply
constraint can be written as

Nt|τ (j) =

[(
Pt−1

Pτ−1

)γW Zt
Zτ
W
]−εW,t

W
εW,t
t Nt (205)

The partial derivative with respect to the wage choice is given by

∂Nt|τ (j)

∂W
W
−εW,t

= Nt|τ (j) (206)

Furthermore, using the budget constraint, we can write consumption as a function of wages.
Taking the derivative of consumption with respect to the wage choice gives

∂Ct|τ (j)

∂W
=

∂

∂W

(
1

Pt

[
g(·) +Wt|τ (j)Nt|τ (j)

])
(207)

=
1

Pt

∂

∂W
(
Wt|τ (j)Nt|τ (j)

)
(208)

where g is a function of non-consumption and non-labour related variables from the budget
constraint, and for which it is evident that ∂g(·)

∂W = 0. We have

Nt|τ (j)Wt|τ (j) =

[(
Pt−1

Pτ−1

)γW Zt
Zτ
W
]−εWt

W
εW,t
t Nt

[(
Pt−1

Pτ−1

)γW Zt
Zτ
W
]

and thus

∂Nt|τ (j)Wt|τ (j)

∂W
= −(εW,t − 1)

[(
Pt−1

Pτ−1

)γW Zt
Zτ

]−εWt+1

W
εW,t
t NtW−εW,t (209)

= −(εW,t − 1)

[(
Pt−1

Pτ−1

)γW Zt
Zτ
W
]−εWt+1

W
εW,t
t NtW−1 (210)

= −(εW,t − 1)Nt|τ (j)

[(
Pt−1

Pτ−1

)γW Zt
Zτ

]
(211)
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and therefore
∂Ct|τ (j)

∂W
= −P−1

t (εW,t − 1)Nt|τ (j)

[(
Pt−1

Pτ−1

)γW Zt
Zτ

]
(212)

At time t we write
∂Ut|τ (j)

∂W
= MUC,t|τ

∂Ct|τ (j)

∂W
+MUN,t|τ

∂Nt|τ (j)

∂W
Then the first order condition for the maximisation problem becomes

0 = Eτ

[ ∞∑
t=τ

θt−τW βt−τ
(
−MUC,t|τP

−1
t (εW,t − 1)Nt|τ (j)

[(
Pt−1

Pτ−1

)γW Zt
Zτ

])]

− Eτ

[ ∞∑
t=0

θt−τW βt−τ
(
MUN,t|τ εW,tW−1Nt|τ (j)

)]
multiply by −W and rearrange to produce

0 = Eτ

[ ∞∑
t=τ

θt−τW βt−τ
(

(εW,t − 1)Nt|τ (j)MUC,t|τ
W
Pt

[(
Pt−1

Pτ−1

)γW Zt
Zτ

])]

− Eτ

[ ∞∑
t=0

θt−τW βt−τ (εW,t − 1)Nt|τ (j)MW,tMRSt|τ (j)

]
whereMW,t =

εW,t
εW,t−1 .

Now using the law of the unconscious statistician, in the same manner as for the price index in
Appendix A, section 7.6, the wage index can be written as

Wt =

[
θW

((
Pt−1

Pt−2

)γW Zt
Zt−1

Wt−1

)1−εW,t
+ (1− θW )W1−εW,t

t

] 1
1−εW,t

(213)

8 Appendix B

In this section we list the underlying time series used in estimating the model parameters, as well
as linking them to their corresponding variable in DYNIMO. See the QMM handbook (Daníelsson
et al., 2019) for more details on the data.

8.1 Data description

Ct Private consumption. Source: Statistics Iceland/CBI. Unit : Chain-volume measure. Mil-
lions of kronas at constant 2005 prices.

Nt Total hours. Source: CBI. Unit : Total hours worked.

EXt Export volume of goods and services. Source: Statistics Iceland/CBI. Unit : Chain-volume
measure. Millions of kronas at constant 2005 prices.

EXg,t Export volume of goods and services, excluding aluminium, marine products, airplanes,
and ships as well as exports of manufacturing services. Source: Statistics Iceland. Unit:
Chain-volume measure. Millions of kronas at constant 2005 prices.
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Gt Government consumption. Source: Statistics Iceland/CBI. Unit: Chain-volume measure.
Millions of kronas at constant 2005 prices.

Yt Gross domestic production. Source: Statistics Iceland/CBI. Unit: Chain-volume measure.
Millions of kronas at constant 2005 prices.

It Fixed investment. Source: Statistics Iceland/CBI. Unit: Chain-volume measure. Millions
of kronas at constant 2005 prices.

IMt Import volume of goods and services. Source: Statistics Iceland/CBI. Unit: Chain-volume
measure. Millions of kronas at constant 2005 prices.

PY,t GDP price deflator. Source: Statistics Iceland/CBI. Unit: Index (normalised such that
mean is unity in 2005).

PF,t Import price deflator. Source: Statistics Iceland/CBI. Unit: Index.

St Real exchange rate. Source: CBI. Unit: Fraction.44.

Rt Central Bank of Iceland monetary policy rate measured in annual yields. Source: CBI.
Unit: Fraction.

Wt Wages. Source: Statistics Iceland. Unit: Index (normalised such that mean is unity in
2005).

P∗t Trade weighted average of consumer prices in Iceland’s main trading partners. Source:
IMF/CBI. Unit: Index (normalised such that mean is unity in 2005).

A∗t Trade weighted real GDP levels in Iceland’s main trading partners. Source: OECD/CBI.
Unit: Index (normalised such that mean is unity in 2005).

R∗t Trade weighted foreign 3 month Treasury Bill interest rates of Iceland’s main trading
partners. Source: OECD/CBI. Unit: Fraction.

8.2 Data to model variables transformations

Table 10: Data to model variables transformations. We denote the trend of a variable Xt with
XT
t or Xeq.

Description Transform

Output Y̊t = ln
(

Yt
Yt−1

)
− ln

(
Y Tt
Y Tt−1

)
Consumption C̊t = ln

(
Ct
Ct−1

)
− ln

(
CTt
CTt−1

)
Investment I̊t = ln

(
It
It−1

)
− ln

(
ITt
ITt−1

)
Government consumption G̊t = ln

(
Gt
Gt−1

)
− ln

(
GTt
GTt−1

)
Imports ˚IM t = ln

(
IMt

IMt−1

)
− ln

(
IMT

t

IMT
t−1

)
Exports E̊Xt = EXt

Yt

Y Tt
EXTt

− 1

Generic Exports E̊Xg,t =
EXg,t
EXt

EXTt
EXTg,t

− 1

(Continued on next page)
44The variable for real exchange rate in QMM, REX, is defined as S−1

t .
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Table 10: (continued)

Description Transform

Inflation π̊t = ΠP,t − Πeq

4

GDP deflator P̊Y,t = ln(PY,t)− ln(PTY,t)

Import deflator P̊F,tt = ln
(

PF,t
PF,t−1

)
− ln

(
PTF,t
PTF,t−1

)
Real exchange rate S̊t = ln(St)− ln(STt )

Interest rate R̊t = Rt−Req
4

Total hours N̊t = ln(Nt)− ln(NT
t )

Foreign output Å∗t = ln(A∗t )− ln((A∗)T )

Foreign inflation π̊∗t = Π∗P,t −
(Π∗)eq

4

Foreign interest rates R̊∗t =
R∗t−(R∗)eq

4

9 Appendix C

9.1 Steady state relations

In this appendix we derive steady state values required to calculate the percentage deviations
from steady state but were not derived in the text. We start by stating the assumptions:

• ΠP = ΠH = ΠF = Π∗H = 1

• PH = U = 1

• Zi = 1

• B∗H = NX = 0

where Zi is in the set of all shocks of that form in the model. In addition, we assume no
adjustment cost in steady state. Let us first show that R = R∗ = β−1. Equation (143) states

1 = RtE[Λt,t+1]

and we previously defined

Λt,t+1 = β
MUC,t+1

MUC,t

Pt
Pt+1

From ΠP = ΠP = ΠZ = 1 we get that
Λ = β

and therefore
R = β−1

Equation (146) gives the relationship between R∗t and the domestic economy:

1 = R∗t (1− ΓB,t)E[Λt,t+1Πξ,t+1]
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By assumption ΓB = 0 and Πξ = 1 follows from definitions and T = 1 from below. We have just
shown that Λ = β, and we thus get

1 = R∗β

Next we establish the steady state relationships of output, export, import and the exchange rate.
Note that since we assume PH = 1, the definition of the price index in steady state, given by

1 = (1− α)P 1−η
H + αP 1−η

F

implies that PF = 1. From equation (47), which states that

IMt = α

(
PF,t
Pt

)−η
At

we immediately get
αIM = A

By definition we have
PY,tYt = PH,tY

h
H,t + ξtP

∗
H,tEXH,t

From equations (46) we know that we can write

Y hH,t = (1− α)

(
PH,t
Pt

)−η
At

From which we directly see
Y hH = (1− α)A

Again using the definition of the price index and import demand we can write

PY,t
Pt

Yt = At + ξt
P ∗H,t
Pt

NXt

In steady state, we assume that NX = 0 and it is clear that we can write

Y = P−1
Y A

and
EX = T · IM

We can thus write
TαA = (1− α)P 1−η

H A+ αSP ∗HTP
−η
F A

Since PY = T−α. Using that PF = PH = 1 and the definition of terms of trade

T =
PF
SP ∗H,t

we get
Tα = 1− α+ α

and thus T = PY = 1, which implies that

SP ∗H,t = 1, Y = A, and IM = EX

95



From the calculations above we can thus conclude that

αY = αA = IM = EX

Next we show that RK = β−1 − 1 + δ. Equation (28) states

1 =QtZI,t

(
1− ΓI,t (·)− Γ′I,t (·)

(
It
It−1

))
+ Et

[
Qt+1

Pt+1

Pt
Λt,t+1ZI,t+1Γ′I,t+1 (·)

(
It+1

It

)2
]

Since we assume no adjustment costs in equilibrium we get Q = 1, but we know from section 5.3
that

Q =
β

(1− (1− δ))β
RK

Straightforwardly from these two equations we get

RK = β−1 − 1 + δ

We now give the steady state relationship for the domestic markup. We know from above that
EX = αY and, by assumption, EXE = αEEX. Thus

KE = YE = EXE = α · αEY

Since
Y = Yg + YE

it follows that
Yg = (1− α · αE)Y

Therefore, from
K = Kg +KE

we get

K

Y
=
Kg

Y
+
KE

Y

=
Kg

Yg
(1− α · αE) + α · αE

=
MCψH
RK

(1− α · αE) + α · αE

We have that RK = β−1 − 1 + δ from above, and MC =M−1
H from section 5.4.1. Thus

K

Y
=

(1− α · αE)ψH
MH(β−1 − 1 + δ)

+ α · αE (214)

Isolating MH in the last equation gives

MH =
(1− α · αE)ψH

(β−1 − 1 + δ)
(
Y
K − α · αE

) (215)
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From the stationary equation of the law of motion of capital, given in equation (65):

1 = (1− δ)KS,tK
−1

S,t+1Π−1
Z,t + ZI,t

(
1− ΓI

(
It

It−1

ΠZ,t

))
ItK

−1

S,t+1 (216)

Inserting ΠZ = ZI = 0 and ΓI(1) = 0, in steady state we clearly have

1 = (1− δ) +
It
KS

(217)

Since U = 1 in equilibrium, we get the result

δK = I (218)

From definition we have A = C+I+G+NX. Since we assume NX = 0 and from the calculations
above we have A = Y , therefore we get

1 =
C

Y
+
I

Y
+
G

Y
(219)

97



10 Appendix D

10.1 Figures

Correspondence between model variables and estimation variables, frequently used in titles of
figures, can be found in table 12.

10.1.1 Impulse response functions

Monetary policy shock (εR)

Figure 2: Responses, in percent, to a 1 standard deviation impulse of εR,0.
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Labour augmenting technology shock (εH)

Figure 3: Responses, in percent, to a 1 standard deviation impulse of εH,0.
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Domestic markup shock (εµH )

Figure 4: Responses, in percent, to a 1 standard deviation impulse of εµH ,0.
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Export markup shock (ε∗µH )

Figure 5: Responses, in percent, to a 1 standard deviation impulse of ε∗µH ,0.
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Wage markup shock (εµW )

Figure 6: Responses, in percent, to a 1 standard deviation impulse of εµW ,0.
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Risk premium shock (εB)

Figure 7: Responses, in percent, to a 1 standard deviation impulse of εB,0.
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10.1.2 Forecast error variance

Figure 8: Forecast error variance decomposition for the interest rate.
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Figure 9: Forecast error variance decomposition for output.
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Figure 10: Forecast error variance decomposition for output growth.
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Figure 11: Forecast error variance decomposition for inflation.
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Figure 12: Forecast error variance decomposition for consumption.
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Figure 13: Forecast error variance decomposition for investment.
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Figure 14: Forecast error variance decomposition for hours.
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10.1.3 Posteriors and priors
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Figure 15: Unnormalised probability densities of priors and posteriors.
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Figure 16: Unnormalised probability densities of priors and posteriors.
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Figure 17: Unnormalised probability densities of priors and posteriors.
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Figure 18: Unnormalised probability densities of priors and posteriors.
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Figure 19: Unnormalised probability densities of priors and posteriors.
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Figure 20: Unnormalised probability densities of priors and posteriors.
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10.1.4 Non-grouped forecast error variance decomposition

Figure 21: Forecast error variance decomposition for output growth.
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Figure 22: Forecast error variance decomposition for inflation.
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10.1.5 Convergence diagnostics
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Figure 23: Multivariate convergence diagnostics for the Metropolis-Hastings. The first,
second and third rows are respectively the criteria based on the eighty percent interval, the
second and third moments. The different parameters are aggregated using the posterior kernel.
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Figure 24: Univariate convergence diagnostics for the Metropolis-Hastings. The first, second
and third columns are respectively the criteria based on the eighty percent interval, the second
and third moments.
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Figure 25: Univariate convergence diagnostics for the Metropolis-Hastings. The first, second
and third columns are respectively the criteria based on the eighty percent interval, the second
and third moments.
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Figure 26: Univariate convergence diagnostics for the Metropolis-Hastings. The first, second
and third columns are respectively the criteria based on the eighty percent interval, the second
and third moments.
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Figure 27: Univariate convergence diagnostics for the Metropolis-Hastings. The first, second
and third columns are respectively the criteria based on the eighty percent interval, the second
and third moments.
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Figure 28: Univariate convergence diagnostics for the Metropolis-Hastings. The first, second
and third columns are respectively the criteria based on the eighty percent interval, the second
and third moments.
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Figure 29: Univariate convergence diagnostics for the Metropolis-Hastings. The first, second
and third columns are respectively the criteria based on the eighty percent interval, the second
and third moments.
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Figure 30: Univariate convergence diagnostics for the Metropolis-Hastings. The first, second
and third columns are respectively the criteria based on the eighty percent interval, the second
and third moments.
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Figure 31: Univariate convergence diagnostics for the Metropolis-Hastings. The first, second
and third columns are respectively the criteria based on the eighty percent interval, the second
and third moments.
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Figure 32: Univariate convergence diagnostics for the Metropolis-Hastings. The first, second
and third columns are respectively the criteria based on the eighty percent interval, the second
and third moments.
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Figure 33: Univariate convergence diagnostics for the Metropolis-Hastings. The first, second
and third columns are respectively the criteria based on the eighty percent interval, the second
and third moments.
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Figure 34: Univariate convergence diagnostics for the Metropolis-Hastings. The first, second
and third columns are respectively the criteria based on the eighty percent interval, the second
and third moments.
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Figure 35: Univariate convergence diagnostics for the Metropolis-Hastings. The first, second
and third columns are respectively the criteria based on the eighty percent interval, the second
and third moments.
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Figure 36: Univariate convergence diagnostics for the Metropolis-Hastings. The first, second
and third columns are respectively the criteria based on the eighty percent interval, the second
and third moments.
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Figure 37: Univariate convergence diagnostics for the Metropolis-Hastings. The first, second
and third columns are respectively the criteria based on the eighty percent interval, the second
and third moments.

131



1 2 3 4

10
6

0.08

0.09

0.1
var_py (Interval)

1 2 3 4

10
6

1.2

1.3

1.4

10
-3var_py (m2)

1 2 3 4

10
6

7

8

9

10
-5var_py (m3)

1 2 3 4

10
6

0.3

0.35

0.4
var_pp (Interval)

1 2 3 4

10
6

0.01

0.015

0.02

var_pp (m2)

1 2 3 4

10
6

2

3

4
10

-3var_pp (m3)

1 2 3 4

10
6

0.34

0.36

0.38

0.4

0.42

var_pr (Interval)

1 2 3 4

10
6

0.02

0.025

0.03
var_pr (m2)

1 2 3 4

10
6

4

6

8

10
-3var_pr (m3)

Figure 38: Univariate convergence diagnostics for the Metropolis-Hastings. The first, second
and third columns are respectively the criteria based on the eighty percent interval, the second
and third moments.
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Figure 39: Univariate convergence diagnostics for the Metropolis-Hastings. The first, second
and third columns are respectively the criteria based on the eighty percent interval, the second
and third moments.
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10.1.6 Smoothed observables

Figure 40: Smoothed observables.
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Figure 41: Smoothed observables.
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10.2 Tables

Table 11: Priors and posteriors for parameters of the foreign economy’s VAR model.

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

py,y norm 0.900 2.0000 0.956 0.0479 0.8785 1.0349
py,π norm 0.000 2.0000 -0.193 0.1752 -0.4819 0.0933
py,r norm 0.000 2.0000 0.322 0.2628 -0.1087 0.7501
pπ,y norm 0.100 2.0000 0.048 0.0368 -0.0119 0.1087
pπ,π norm 0.600 2.0000 0.614 0.1153 0.4256 0.8030
pπ,r norm -0.100 2.0000 -0.334 0.1632 -0.6015 -0.0678
pr,y norm 0.000 2.0000 -0.023 0.0182 -0.0530 0.0063
pr,π norm 0.000 2.0000 0.071 0.0736 -0.0510 0.1904
pr,r norm 0.800 2.0000 0.857 0.0918 0.7091 1.0070

Table 12: Correspondence between model variables and estimation variables.

Model variable Estimation variable

σZ SE_EPS
σG SE_EPSG
σH SE_EPSB
σC SE_EPSC
σD SE_EPSD
σI SE_EPSI
σµF SE_EPSMUF
σµH SE_EPSMUH
σ∗µH SE_EPSMUHF
σµW SE_EPSMUW
σPF SE_EPSPF
σE SE_EPSEX
σ∗A SE_EPSFYF
σ∗π SE_EPSFPIPF
σ∗R SE_EPSFRF
hC hc
hN hn
λI lambdai
φB phib
φ∆Y phideltay

(Continued on next page)
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Table 12: (continued)

Model variable Estimation variable

φP phip
φY phiy
θH thetaf
θF thetah
θ∗F thetahf
θW thetaw
ξ deltas
ρZ rho
ρB rhob
ρC rhoc
ρD rhod
ρH rhoh
ρI rhoi
ρµF rhomuf
ρµH rhomuh
ρ∗µH rhomuhf
ρµW rhomuw
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