Models for Monetary Policy

Central Bank of Iceland

June 16, 2004

Eric M. Leeper

Indiana University

1 Why Models?

- Everyone uses models—either implicit or explicit
- Explicit models are preferred
- Some reasons for using explicit models
 - help tell consistent stories
 - impose discipline on policy analysis and policy making
 - help communicate to public in consistent and credible manner

- Models complement but do not replace judgment and sector expertise
- Multiplicity of models reflects
 - different economic and political prior beliefs
 - different trade-offs between fit and interpretability
- How should we handle multiple models?
 - take model uncertainty seriously

2 Which Model(s)?

- In practice, a trade-off between fit and interpretability
 - but most models have problems with both
- Multiple models for the foreseeable future
- Models now in use at central banks
 - 1. reduced-form forecasting
 - 2. traditional simultaneous equations
 - 3. dynamic stochastic general equilibrium
 - 4. identified VARs

- Simultaneous equations and DSGE are special cases of identified VARs
 - impose restrictions often avoided by VARs
- Restrictions from theory aid in interpretation often at cost of fit to data
- I will focus on Bayesian identified VARs
- Bayesian priors serve three purposes
 - improve fit and out-of-sample forecast performance
 - incorporate economically meaningful prior information
 - produce complete posterior distribution

3 Identified VARs

- General strategy: impose as few restrictions as necessary to identify objects of interest
- Example: separate economy into behaviorally distinct sectors
 - monetary policy
 - money demand/banking sector
 - goods and labor markets
 - auction-market prices

VAR:

$$A_0 X_t = A(L) X_{t-1} + \varepsilon_t$$

 X_t : vector of endogenous variables like GDP, price level, employment, exchange rate, short-term nominal interest rate, money stock

- ullet Restrictions placed on A_0 such that
 - each type of behavior of interest is identified
 - equivalently, each exogenous shock of interest, ε_t^i , uncorrelated with other shocks of interest
 - no restrictions placed on A(L)

- Note: could deviate from spirit of VAR and impose restrictions on A(L)
 - might be interested in "simple" relations
 - might wish to impose "small open economy" restrictions—rest of world exogenous

Monetary policy: one equation in system

$$R_t = f(\Omega_t) + \varepsilon_t^{MP}$$

 Ω_t : central bank's information at t

f: linear function ("systematic" policy)

 $arepsilon_t^{MP}$: exogenous shift in policy (policy "shock")

ullet Disturbances to $arepsilon_t^{MP}$ should produce the dynamic impacts of monetary policy

4 What Identified VARs Can Do

Given some identification of exogenous policy

- Basic forecasting
 - out-of-sample forecasts
- Counterfactual questions
 - projections conditional on interventions: exogenous paths for policy or other variables

- Display and evaluate trade-offs
 - joint distributions of forecasts
 - joint probability statements for policy
- Define a policy intervention to be a hypothetical path for $\{R_t\}$
 - engineered by a particular path for $\{\varepsilon_t^{MP}\}$, holding all other ε 's fixed
- Inflation targeter: what path of $\{R_t\}$ over the next k years will bring inflation to its target value?

- When is this a reasonable exercise?
 - we are holding estimated A's fixed: Lucas critique
 - requires that ε_t^{MP} uncorrelated with other ε 's
- Any model is "structural" only for some class of interventions (Hurwicz via Cowles)
 - Lucas critique relevant to any modeling technique
- respect Lucas critique: is contemplated intervention "modest"?

Example from Leeper-Zha (JME 2003)

A standard identification of policy in small model

Consider an intervention on policy variable (e.g., exogenous part of policy):

$$I_T = \{ \widetilde{arepsilon}_{T+1}^{MP}, ..., \widetilde{arepsilon}_{PT+K}^{MP} \}$$

Take draws from distributions for $(\hat{A}, \hat{\varepsilon})$ to get distribution for $\{X_t\}$ conditional on I_T

- compute "rivers of blood"
- assess risks to forecast

How likely are the effects of I_T given policy's historical impacts?

- ullet If likely, then I_T is modest and projections reliable
 - agents unlikely to infer regime changed,
 so original decision rules hold
- ullet If unlikely, then I_T is immodest and projections unreliable
 - agents may infer regime changed, so they update decision rules and destabilize constant-parameter VAR

Figure 1. Forecasts Conditional on Actual and Tighter Policy

Actual (solid) and out-of-sample forecast (dashed). First column: forecasts conditional on actual path of the federal funds rate from October 1990 to January 1991 (8.11%,7.81%,7.31%,6.91%); second column: forecasts conditional on tighter policy (8.70%,8.95%,8.95%,8.95%). 68% probability bands (dashed). Annual average growth rates or percentage points.

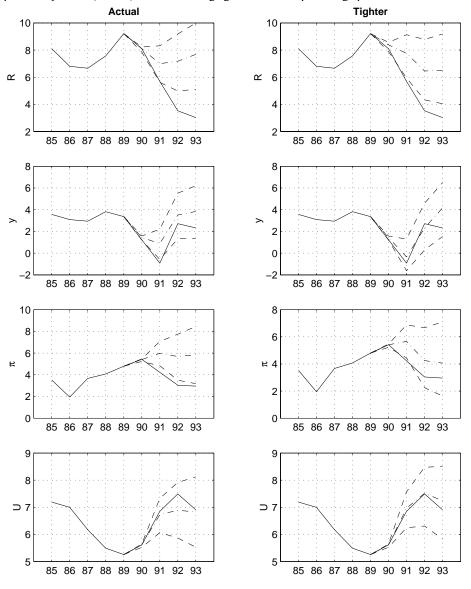


Table 1. Joint and Marginal Probabilities Conditional on Alternative Policies

Outcomes Based on Out-of-Sample Forecasts from September 1990.

"Tighter" policy raises R^f to 8.70% in October and to 8.95% in November 1990-January 1991 and is produced by the sequence of exogenous actions $\tilde{\varepsilon}_P = (2.3, 1.7, 1.0, 0.9)$.

"Actual R^f " sets R^f at 8.11% in October, 7.81% in November, 7.31% in December, 6.91% in January 1991 and is produced by the sequence of exogenous actions $\tilde{\varepsilon}_P = (0.5, 0.1, -0.7, -0.7)$.

· ·	, ,	1
	Tighter	Actual R ^f
$P(low \pi in 1992)$.67	.47
$P(low \pi in 1993)$.66	.46
$P(low \ \pi \ in \ 1992 \ and \ 1993)$.57	.36
P(recession in 1991)	.53	.27
P(recession in 1992)	.12	.05
P(recession in 1993)	.05	.06
$P(recession \text{ and } low \pi)$.33	.11
$P(recession \text{ and } high \pi)$.25	.22
$P(no\ recession\ and\ low\ \pi)$.24	.25
$P(no\ recession\ and\ high\ \pi)$.18	.42

P(*recession*) is the probability of negative real GDP growth in 1991 or 1992 or 1993.

 $P(low \pi)$ is the probability of inflation below $5\frac{1}{2}$ percent in 1992 and 1993.

 $P(recession \text{ and } low \pi)$ is the probability of negative real GDP growth in 1991 or 1992 or 1993 and inflation below 5½ percent in 1992 and 1993.

- Business-as-usual policy questions
 - 50-bp increase in R over next few months
 - constant R over next few months
- * tend to involve modest interventions
- * projections from linear models reliable
- ullet Conditioning on constant R over 2-3 years
- tends to need an immodest intervention: effects on $\{X_t\}$ unlikely to arise given historical effects on X of fluctuations in ε
- projections unreliable

Use projection techniques to address

- Counterfactuals about "structural" aspects of economy
 - degree of competitiveness of markets
 - degree of financial market integration
 - degree of forward-looking behavior
- Requires constructing interventions that mimic these aspects
 - still intervening on shocks, rather than parameters
 - a question of perceived persistence of changes

5 What Identified VARs Could Do

- 1. Extend identification to entire model
 - (a) many behavioral relationships
 - (b) restrictions on lags
 - (c) cross-equation restrictions
- overidentifying restrictions: the economist's friend (but test them)
- freed of "incredible restrictions" stricture
- nothing to lose but your unidentified parameters

- 2. Priors on economically meaningful objects
 - (a) uncovered interest parity
 - (b) liquidity effect/Fisher relation
 - (c) expectations theory of term structure
 - (d) slope & location of Phillips curve
 - (e) signs & magnitudes of elasticities
- 3. Expand size of VAR (Bayesian)
 - (a) LSZ estimated 18-variable systems
 - (b) break model into sub-systems to disaggregate
 - (c) combine weekly/monthly and quarterly data

- 4. Integrate judgmental analysis
 - (a) compute projections conditional on subjective forecasts
 - (b) compare model forecasts to subjective forecasts
 - (c) use "modesty metric" to gauge how much judgment is moving the forecast or use relative entropy (Robertson-Tallman-Whiteman)
 - (d) add subjective forecasts as explanatory variables in VAR
 - (e) especially useful around large unusual events

6 Things to Worry About

- Some important concerns
 - identification: try several; check robustness; check fit
 - parameter constancy
 - modeling errors (non-normality)
- Constancy: Sims-Zha
 - change in shock distribution is critical for fit
 - even with a prior concentrated on nonconstant parameters, cannot dismiss constant parameter model

Need more theory of behavior under parameter drift

- e.g., on-going regime changes
- decision rules embed probability of change and nature of equilibrium can differ sharply from permanent regime environment

7 Limitations of VARs

- Identification
 - most behavioral relations not identified
 - * can be addressed a la Cowles but will violate rational expectations
 - expectations not identified
 - * cannot intervene easily (credibly?) on expectations formation

8 What We Would Like to Do

- Central banks have "suites" of models
 - often arose piecemeal
 - historical accidents
 - designed to handle diversity among policy makers
- How can we make sense of the disparate answers offered by these models?
- Take model uncertainty seriously

- If models competitive in terms of fit ...
 identified VAR and DSGE (Smets-Wouters)
 - Bayesian model averaging (Brock-Durlauf-West)
 - ascribe prior probability to each model (tied to policy makers' priors?)
 - update as new data arrive, recompute probability weight for each model as function of fit
 - over time, some models will emerge as more consistent with data and will receive heavier probability weights

- with similar predictions, DSGE offers detailed economic interpretations
- with different predictions, need to know how much attention to pay to each model (use probability weights)

9 Models and Communication

- Aligning communication and behavior
 - some inflation targeters think communication must be simple to be understood
 - but central bank behavior is not simple
 - * even inflation targeters care about output
 - * central banks recognize and act on trade-offs
 - effective communication must reflect this behavior

- Sveriges Riksbank example
 - "rule of thumb": if inflation forecast two years ahead is above 2%, they will raise the interest rate
 - a simple and easily understood rule
 - 2004:2 Statistics Sweden changed definition of CPI and forecasted inflation after 2 years was 2.2%
 - the Riksbank did not change the interest rate
 - press asked if this was a change in policy
 - the Riksbank had to explain that it doesn't really follow the simple rule exactly

- modified rule to add "in normal circumstances..." (Heikensten 1999)
- Problem stems from not obeying the adage
 - "mean what you say...and
 - say what you mean"
 - because of the Riksbank's credibility,
 people believe that the Riksbank means
 what it says
 - because communication and behavior are misaligned, the Riksbank doesn't say what it means
- Morale: talking simply does not imply acting simply

- How can models help?
- Use a model to show
 - when you changed the rate in the past,
 exactly what the inflation and output
 forecasts were before and after the change
 - illustrates the impacts of monetary policy
 - shows what would have happened had the bank not taken the action
 - demonstrates trade-offs policy committee faced
 - accurately portrays policy making process

- Report the entire path of the interest rate actually conditioned on in the forecasts
 - most banks claim they condition on a constant rate
 - most models misbehave badly if the rate is actually held fixed over the forecast horizon (i.e., "immodest" intervention)
- Using a model to generate a believable interest rate path
 - increases credibility of the forecast
 - communicates about the bank's future intentions

- RBNZ has been publishing interest rate path for some time now
 - no problems with communication
 - no tendency for people to take the path as a firm commitment
- Optimal control approach advocated by Svensson
 - requires central bank to communicate "the model" clearly
 - combined with inflation forecast, model allows people to form expectations of future policy

- "the model" should be regularly discussed and scrutinized publicly
- But now return full circle to the appeal of announcing interest rate path