LOST IN TRANSIT: PRODUCT REPLACEMENT BIAS AND PRICING TO MARKET

Emi Nakamura and Jón Steinsson

Columbia University

October 26, 2009

Conventional wisdom for post-Bretton Woods period:

- Large swings in U.S. dollar exchange rate
- U.S. import and export prices more stable
- Measured pass-through:
 - Prices of U.S. imports: 0.2-0.4%
 - Prices of U.S. exports: 0.9%
- Exchange rate disconnect "puzzle"

$$\boldsymbol{p}_t^m - \boldsymbol{p}_t = \alpha + \gamma \boldsymbol{t} - \beta \boldsymbol{q}_t + \boldsymbol{\epsilon}_t$$

- Leading potential explanation: Pricing to market
 - Exporters "price to market" if they adjust the markups to stabilize the local currency price of their products (Krugman, 1987)

- Not necessarily a causal relationship
- Semantics: Pricing to Market = 1 Pass-Through

- Simple models: No pricing to market
 - Backus, Kehoe and Kydland (1992), Stockman and Tesar (1995), Obstfeld and Rogoff (1995)
- Models with long run pricing to market:
 - Dornbusch (1987), Goldberg and Verboven (2001), Corsetti and Dedola (2005), Atkeson and Burstein (2008), Gust, Leduc and Vigfusson (2006), Gopinath, Itskhoki and Rigobon (2007), Drozd and Nosal (2008).

< 口 > < 同 > < 回 > < 回 > < 回 > <

- Pricing to market has profound policy implications
- Traditional view:
 - Flexible exchange rate generates expenditure switching
 - Depreciation yields increased "competitiveness"
- Pricing to market shuts down this pathway
 - Firms stabilize their prices in local currency terms
 - Domestic production doesn't become cheaper

Estimates of U.S. pricing to market raise theoretical challenges:

- Difficult to match measured pricing to market for imports
 - Large markups to avoid negative profits
 - Large strategic complementarities
 - Existing models:

Atkeson and Burstein (2008): 0.75 Corsetti and Dedola (2005): 0.9

- Why such a large asymmetry between U.S. imports and exports?
- Why is the U.S. such an outlier?

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- Product replacement is frequent
- Measured prices are sticky
 - Few price changes per product:

45% have none 70% have 2 or less What happens to prices at the time of product replacements?

- Difficult to measure
- In practice: Many product replacements are "linked in"
 - Inflation measured as inflation for continuing goods
- New goods bias:
 - Upward bias in the level of measured inflation
- Product replacement bias:
 - Downward bias in responsiveness to real exchange rates

Fixed Weight Tornqvist index:

$$\Delta P_{it} = \sum_{j=1}^{N} w_i \Delta p_{jit}$$

 ΔP_{it} : Log change in aggregate price index Δp_{jit} : Log change in price of product *j w*_i: Expenditure weight

- Matched model index: inflation for continuing goods
- Price changes for new goods are dropped (unobserved)

Figure: Prices and Exchange Rates

Prices are reset (fresh) at time of product replacements

- Firms set new prices when buyer, seller or product specification changes
- Measurement issues

This paper:

- Quantify magnitude of product replacement bias using estimates of the frequency of price change and product replacement
- Test other predictions of model with product replacement bias

E 5 4 E

PREVIEW OF RESULTS

- Product replacement bias:
 - Roughly a factor of 2
- Revised estimates of pass-through:
 - Imports: 0.7 (rather than 0.4)
 - Exports: 0.8 (rather than 0.9)
- Pricing to market:
 - More symmetric
 - More moderate for imports
- Implies more volatile terms of trade
- Improves fit of data to standard models

- Pass-through regressions (aggregate data)
- Theoretical factor calculation
- Measurement of product replacement bias (micro data)
- Alternative measures of pass-through (micro data)

- NIPA price indices on import and export prices 1982 2007
- Fed real exchange rate series (Major Currency)

< ロ > < 同 > < 回 > < 回 >

• Simple measure of pricing to market:

$$\boldsymbol{p}_t^m - \boldsymbol{p}_t = \alpha + \gamma \boldsymbol{t} - \beta \boldsymbol{q}_t + \boldsymbol{\epsilon}_t$$

 $p_t^m - p_t$: Relative price of foreign products q_t : Real exchange rate (home price relative to foreign price)

PRICES AND EXCHANGE RATES: EVIDENCE

VECM:

$$\Delta y_t = \Pi(Ay_{t-1} + \alpha + \gamma t) + \sum_{k=1}^{n-1} \Gamma_k \Delta y_{t-k} + \delta + \epsilon_t$$

•
$$y_t = (p_t^m - p_t, q_t)$$

• Coefficients in cointegrating vector: [1 β]

Dynamic adjustment:

$$\Delta(\boldsymbol{p}_t^m - \boldsymbol{p}_t) = \alpha - \sum_{k=0}^{6} \beta_k \Delta \boldsymbol{q}_{t-k} + \epsilon_t$$

Note: Pricing to market = 1- pass-through for aggregate data

N 4 T N

TABLE					
Pri	cing to Market				
	Imports	Exports	_		
<u>Measured:</u> VECM	0.41 (0.05)	0.87 (0.06)			
Dynamic Adjustment	0.43 (0.05)	0.85 (0.05)			
Levels	0.36 (0.02)	0.86 (0.03)			

U.S. Import Prices and the Real Exchange Rate

Figure III U.S. Export Prices and the Real Exchange Rate

TABLEPricing to Market over Subsamples

Period	VECM	Dynamic Adj.
1982-2008	0.41	0.43
	(0.05)	(0.05)
1994-2008	0.46	0.32
	(0.08)	(0.08)

- How do we quantify product replacement bias in terms of observables?
- Model with product replacement

-

PRICES AND EXCHANGE RATES: THEORY

- Continuum of product lines j
- C_{jit} denoted units of product line j
- γ_{jit} denotes quality each unit in terms of utility
- Consumption aggregator for products from country *i*:

$$C_{it} = \left[\int_{N_i} (\gamma_{jit}C_{jit})^{rac{ heta-1}{ heta}} dj
ight]^{rac{ heta}{ heta-1}}$$

• Price index for products from country i

$$\boldsymbol{P}_{it} = \left[\int_{N_i} \left(\frac{\boldsymbol{P}_{jit}}{\gamma_{jit}}\right)^{1-\theta} d\boldsymbol{j}\right]^{\frac{1}{1-\theta}}$$

• γ_{jit} is unobserved to econometrician and BLS

Production function:

$$C_{jit} = \gamma_{jit}^{-1} F(K_{jit}, L_{jit})$$

$$\gamma_{jit} \begin{cases} \sim \Gamma_t & \text{if product is replaced} \\ = \gamma_{jit-1} & \text{otherwise} \end{cases}$$

Notation:

- Frequency of product replacement: $z(s_t)$
- **2** Frequency of price change $f_j(s_t)$

< 🗇 🕨

EFFECTIVE PRICES AND QUANTITIES

- Effective consumption: $\hat{C}_{jit} = \gamma_{jit} C_{jit}$
- Effective price: $\hat{P}_{jit} = \gamma_{jit}^{-1} P_{jit}$
- Then we have:

$$egin{aligned} C_{it} &= \left[\int_{N_i} \hat{C}_{jit}^{rac{ heta-1}{ heta}} dj
ight]^{rac{ heta}{ heta-1}} \ P_{it} &= \left[\int_{N_i} \hat{P}_{jit}^{1- heta} dj
ight]^{rac{1}{1- heta}} \ \hat{C}_{jit} &= F(K_{jit}, L_{jit}) \end{aligned}$$

- Totally eliminate γ_{jit} from the model
- Standard set of assumptions about demand and supply for "effective" units of output

Nakamura and Steinsson (Columbia)

Lost in Transit

Measurement problem: γ_{jit} unobserved to BLS (observed to consumers and producers)

- Ideal solution: Hedonics
- In practice: Matched model index
- Implicitly assumes: price flexibility for new goods same as for continuing goods (80-90% sticky prices)
- Alternative assumption: New goods get new prices

Key assumptions:

- Prices are reset at time of product replacements
 - Firms set new prices when buyer, seller or product specification changes
 - Measurement issues
- Price changes at product replacement same as other price changes

• Consider regression of Δp_{it} on aggregate variable Λ_{it} :

$$\Delta p_{it} = \alpha + B \Lambda_{it} + \epsilon_t$$

Price index

$$\Delta p_{it} = \int \Delta \hat{p}_{jit} dj$$

Decompose

$$\textit{B} = \int \int \textit{B}_{j}(\textit{s}) \textit{djds}$$

• Product type *j* and state *s* "regression":

$$\Delta p_{jit} = \alpha_{js} + B_j(s)\Lambda_{it} + \epsilon_{jt}$$

PRODUCT REPLACEMENT: THEORY

- True coefficient: $B_j(s)$
- Measured coefficient: B^{mm}_i(s)
- Regression on only change observations: $B_i^{ch}(s)$
- Relationships:

$$egin{aligned} B_j(s) &= (f_j(s) + z(s) - f_j(s) z(s)) B_j^{ch}(s) \ B_j^{mm}(s) &= f_j(s) B_j^{ch}(s) \end{aligned}$$

Bias:

$$B_j^{mm}(s)=rac{f_j(s)}{f_j(s)+z(s)-f_j(s)z(s)}B_j(s)$$

• All products and states:

$$B^{mm} = \int \int rac{f_j(s)}{f_j(s) + z(s) - f_j(s)z(s)} B_j(s) djds.$$

Factor:

$$\frac{B}{B^{mm}} = \frac{\int \int B_j(s) dj ds}{\int \int \frac{f_j(s)}{f_j(s) + z(s) - f_j(s)z(s)} B_j(s) dj ds}$$

• Factor for constant f_j , z and B

$$\frac{B}{B^{mm}} = \left[\int \frac{f_j}{f_j + z - f_j z} dj\right]^{-1}$$

- Whole distribution of f_j matters
- $f_j/(f_j + z f_j z)$ highly concave

Sign of bias depends on the currency in which price is rigid

• Local currency priced products (LCP):

Appear less responsive to exchange rate

• Producer currency priced products (PCP):

Appear more responsive to exchange rate

In practice:

- 93% of U.S. imports are LCP
- 98% of U.S. exports are PCP

MEASUREMENT

$$\frac{f_j}{f_j + z - zf_j}$$

æ

イロト イヨト イヨト イヨト

- Product-level BLS import and export microdata 1994-2007
- Approx. 1.5 million observations
- Exclude intrafirm transactions
- "Product" level data:
 - Auto part imported by Valeo Electrical Systems from BBI Inc.
 - Definition of a product includes "price determining factors"
 - Price determining factors: shipment size, seller/buyer, etc.
 - Product often a contract between a particular buyer and seller
 - New product not necessarily new to the world

イロト イポト イラト イラト

- Prices of newly introduced goods are "fresh" (newly reset)
- Prices of continuing goods are on average "stale" due to price rigidity

- Product replacement replaces "stale" prices with "fresh" prices without recording a price change
- Systematically misses part of response to exchange rate

イロト イポト イラト イラト

- Many product replacements occur when firms cease buying or selling a product
 - Firms assumed to set new prices when buyer, seller or product specification changes (Carlton, 1986)
 - Approx. 60% of product replacements

• Reporting frictions imply that the prices of newly introduced products are more flexible than continuing products

- Price data collected via optional survey
- New product initiation: Detailed interview
- Subsequent months: Repricing form
 - Easiest response: No change

Direct empirical evidence:

- Subsample: Products with exactly two price changes
- Regression:

$$\Delta \mathbf{p}_{jk} = \alpha + \beta_{\mathcal{S}} \Delta \mathbf{e}_{jk,\mathcal{S}} + \beta_{1Q} \Delta \mathbf{e}_{jk,1Q} + \dots + \beta_{6QL} \Delta \mathbf{e}_{jk,6Q} + \epsilon_{jk},$$

- Run separately for first price change and second price change
- Run separately for imports and exports
- Fresh: β_{1Q} - β_{6Q} the same first and second price change
- Not fresh: β_{1Q} - β_{6Q} larger for first price change than second

(I) > (A) > (A) > (A) > (A)

	Imj	ports	Exports		
	First Price	Second Price	First Price	Second Price	
	Change	Change	Change	Change	
β_{S}	0.23	0.26	0.13	0.11	
	(0.03)	(0.03)	(0.03)	(0.03)	
β_{1Q}	0.19	0.18	0.03	0.14	
	(0.05)	(0.04)	(0.07)	(0.06)	
β_{2Q}	0.13	0.11	-0.06	-0.02	
	(0.04)	(0.04)	(0.06)	(0.06)	
β_{3Q}	-0.01	0.05	0.14	0.15	
	(0.05)	(0.04)	(0.06)	(0.05)	
$\beta_{4\mathrm{Q}}$	0.07	0.09	-0.09	0.09	
	(0.04)	(0.04)	(0.05)	(0.05)	
β_{5Q}	0.05	0.04	0.19	0.08	
	(0.04)	(0.04)	(0.06)	(0.06)	
β_{6Q}	0.14	0.06	0.06	-0.01	
	(0.05)	(0.04)	(0.07)	(0.06)	
P-value (spell vs. 2nd Qrt)	0.052	0.002	0.008	0.059	

TABLEPrice Change for First and Second Spell on Exchange Rate

Price Change for First and Second Spell on Exchange Rate					
	Imj	ports	Exports		
	First Price	Second Price	First Price	Second Price	
	Change	Change	Change	Change	
β_{S+1}	0.21	0.24	0.09	0.12	
	(0.02)	(0.02)	(0.03)	(0.03)	
β_{2-4Q}	0.06	0.09	-0.02	0.08	
	(0.02)	(0.02)	(0.03)	(0.03)	
P-value (spell vs. lags)	0.000	0.000	0.021	0.340	

TABLE

TABLEFrequency of Price Change and Product Substitution for LCP Imports

	Freq. PC	Freq. Subs.	Weight
Animals & Animal Products	0.420	0.034	0.025
Vegetable Products	0.411	0.059	0.022
Foodstuffs	0.159	0.032	0.036
Mineral Products	0.120	0.091	0.007
Chemicals & AlliedIndustries	0.124	0.044	0.054
Plastics / Rubbers	0.186	0.045	0.038
Raw Hides, Skins, Leather, & Furs	0.060	0.043	0.019
Wood & Wood Products	0.338	0.038	0.080
Textiles	0.053	0.066	0.089
Footwear / Headgear	0.047	0.047	0.046
Stone / Glass	0.221	0.025	0.070
Metals	0.215	0.052	0.064
Machinery / Electrical	0.095	0.054	0.204
Transportation	0.087	0.052	0.143
Miscellaneous	0.046	0.044	0.103
Weighted Average	0.141	0.048	1.000
Weighted Median Across Industries	0.095	0.052	1.000

• Constant hazard of price change for each product *j*:

```
f_j \sim \text{Beta}(a, b)
```

- Denote product j's lifetime by n_j
- Denote number of price changes for product j by x_j
- Constant hazard implies:

$$x_j \sim \mathsf{Bin}(n_j, f_j)$$

• We estimate a and b by maximum likelihood

The Distribution of Price Changes and Substitutions				
	Imp	Imports		orts
	LCP	PCP	LCP	PCP
Fraction of Imports/Exports	0.926	0.074	0.029	0.971
Mean Frequency of Price Change	0.141	0.074	0.087	0.117
Median Frequency of Price Change	0.067	0.036	0.035	0.063
Mean Frequency of Substitutions	0.048	0.047	0.057	0.052
Distribution of the Frequency of Price C	Change			
a	0.50	1.07	0.76	0.53
	(0.01)	(0.07)	(0.04)	(0.01)
b	3.65	19.12	7.76	4.60
	(0.06)	(1.32)	(0.83)	(0.11)

TABLE The Distribution of Price Changes and Substitutions

- Gopinath and Itskhoki (2008) argue that low frequency of price change products have low long-run pass-through
- Heterogeneity in desired pass-through affects product replacement bias:

$$rac{B}{B^{mm}} = rac{\int B_j dj}{\int rac{f_j}{f_j + z - f_j z} B_j dj}$$

- Assume low freq. products have LR pass-through equal to 65% of high freq. products (Gopinath and Itskhoki, 2008)
- Alternative explanation: spurious price changes

4 E N 4 E N

TABLE Product Replacement Bias

	LCP	PCP	
No Heterogeneity in Comovement			
Imports	1.84	2.14	
Exports	1.95	1.96	
With Heterogeneity in Comovement			
Imports	1.74	2.14	
Exports	1.90	1.86	

TABLE Pricing to Market

	Imports	Exports
Measured:		
VECM	0.41	0.87
	(0.05)	(0.06)
Dynamic Adjustment	0.43	0.85
	(0.05)	(0.05)
Levels	0.36	0.86
	(0.02)	(0.03)
Adjusting for Product Replacement Bias:		
No Heterogeneity in Comovement	0.70	0.78
With Heterogeneity in Comovement	0.66	0.79

- Product replacement bias distorts pass-through by a factor of roughly 2
- Adjusted estimates:
 - Imports: 0.7 (rather than 0.4)
 - Exports: 0.8 (rather than 0.9)
- Degree of pricing to market
 - More symmetric
 - More moderate for imports

< 6 b

Conventional measures:

- 1% depreciation
- Dollar price of imports rise by 0.2-0.4%
- Dollar price of exports rise by 0.1
- Terms of trade deteriorates by 0.1-0.3%

Adjusting for product replacement bias:

- 1% depreciation
- Dollar price of imports rise by 0.7%
- Dollar price of exports rise by 0.2
- Terms of trade deteriorates by 0.5%

Conventional measures understate volatility of terms of trade by

factor of 1.7-5

Nakamura and Steinsson (Columbia)

3

4 3 5 4 3 5 5

- Applies to consumer prices:
 - Could generate artificially volatile real exchange rate
- May also apply to unit value indices: price comparisons often dropped due to lack of data for previous period
- Affects responsiveness of trade quantities to exchange rates
 - Trade elasticities biased away from one
- May explain differences in measured import price pass-through for developed vs. developing countries